• 제목/요약/키워드: MiRNA Expression Profiles

검색결과 75건 처리시간 0.027초

마이크로어레이 기반 miRNA 모듈 분석을 위한 하이퍼망 분류 기법 (Hypernetwork Classifiers for Microarray-Based miRNA Module Analysis)

  • 김선;김수진;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권6호
    • /
    • pp.347-356
    • /
    • 2008
  • 마이크로어레이는 분자 생물학 실험에 있어 중요한 도구로 사용되고 있으며, 마이크로어레이 데이타 분석을 위한 다양한 계산학적 방법이 개발되어 왔다. 그러나, 기존 분석방법은 주어진 조건에 영향을 주는 개별 유전자를 추출하는 데 강한 방면, 유전자 간의 복합작용에 의한 영향을 분석하기 힘들다는 단점을 가지고 있다. 하이퍼망 모델은 생물학적인 네트워크 작용을 모방한 구조이며, 계산과정에서 요소간의 복합작용을 직접 고려하기 때문에 기존 방법에서 다루기 힘들었던 요소간 상호작용 분석이 가능하다는 장점을 가진다. 본 논문에서는 마이크로어레이 데이타를 기반으로 microRNA(miRNA) 프로파일 분석을 위한 하이퍼망 분류 기법을 소개한다. 하이퍼망 분류기는 miRNA 쌍을 기본 요소로 하여 진화 과정을 통해 miRNA 분류 데이타를 학습한다. 학습된 하이퍼망으로부터 유의하다.고 판단되는 miRNA 모듈을 쉽게 추출할 수 있으며, 사용자는 추출된 모듈의 유치미성을 직접 판단할 수 있다. 하이퍼망 분류기는 암 관련 miRNA 발현 데이타 분류 실험을 통해 91.46%의 정확도를 보임으로써 기존 기계학습 방법에 비해 뛰어난 성능을 보여주었으며, 하이퍼망 분석을 통해 생물학적으로 유의한 miRNA 모듈을 찾을 수 있음을 확인하였다.

Exosomes from Tension Force-Applied Periodontal Ligament Cells Promote Mesenchymal Stem Cell Recruitment by Altering microRNA Profiles

  • Maolin Chang;Qianrou Chen;Beike Wang;Zhen Zhang;Guangli Han
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.202-214
    • /
    • 2023
  • Background and Objectives: To investigate the role of exosomes from periodontal ligament cells (PDLCs) in bone marrow mesenchymal stem cell (BMSC) migration. Methods and Results: Human PDLCs were applied cyclic tension stretching. Exosomes were extracted from cultured PDLCs by ultracentrifugation, then characterized for their size, morphology and protein markers by NTA, TEM and western blotting. The process that PKH26-labeled exosomes taken up by BMSCs was assessed by confocal microscope. BMSC migration was examined by Transwell assay. Exosomes derived from PDLCs were identified. Cyclic tension stretch application on PDLCs can enhance the migration ability of BMSCs through exosomes. The exosomal miRNA expression profiles of unstretched and stretched PDLCs were tested by miRNA microarray. Four miRNAs (miR-4633-5p, miR-30c-5p, miR-371a-3p and let-7b-3p) were upregulated and six (miR-4689, miR-8485, miR-4655-3p, miR-4672, miR-3180-5p and miR-4476) were downregulated in the exosomes after stretching. Sixteen hub proteins were found in the miRNA-mRNA network. Gene Ontology and KEGG pathway analyses demonstrated that the target genes of differentially expressed exosomal miRNAs closely related to the PI3K pathway and vesicle transmission. Conclusions: The exosomes derived from cyclic tension-stretched PDLCs can promote the migration of BMSCs. Alternation of microRNA profiles provides a basis for further research on the regulatory function of the exosomal miRNAs of PDLCs during orthodontic tooth movement.

Identification of stemness and differentially expressed genes in human cementum-derived cells

  • Lee, EunHye;Kim, Young-Sung;Lee, Yong-Moo;Kim, Won-Kyung;Lee, Young-Kyoo;Kim, Su-Hwan
    • Journal of Periodontal and Implant Science
    • /
    • 제51권5호
    • /
    • pp.329-341
    • /
    • 2021
  • Purpose: Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods: Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results: The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions: Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.

Characterization of the MicroRNA Expression Profile of Cervical Squamous Cell Carcinoma Metastases

  • Ding, Hui;Wu, Yi-Lin;Wang, Ying-Xia;Zhu, Fu-Fan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1675-1679
    • /
    • 2014
  • Objectives: MicroRNAs (miRNAs) are important regulators of many physiological and pathological processes, including tumorigenesis and metastasis. In this study, we sought to determine the underlying molecular mechanisms of metastatic cervical carcinoma by performing miRNA profiling. Methods: Tissue samples were collected from ten cervical squamous cancer patients who underwent hysterectomy and pelvic lymph node (PLN) dissection in our hospital, including four PLN-positive (metastatic) cases and six PLN-negative (non-metastatic) cases. A miRNA microarray platform with 1223 probes was used to determine the miRNA expression profiles of these two tissue types and case groups. MiRNAs having at least 4-fold differential expression between PLN-positive and PLN-negative cervical cancer tissues were bioinformatically analyzed for target gene prediction. MiRNAs with tumor-associated target genes were validated by quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results: Thirty-nine miRNAs were differentially expressed (>4-fold) between the PLN-positive and PLN-negative groups, of which, 22 were up-regulated and 17 were down-regulated. Sixty-nine percent of the miRNAs (27/39) had tumor-associated target genes, and the expression levels of six of those (miR-126, miR-96, miR-144, miR-657, miR-490-5p, and miR-323-3p) were confirmed by quantitative (q)RT-PCR. Conclusions: Six MiRNAs with predicted tumor-associated target genes encoding proteins that are known to be involved in cell adhesion, cytoskeletal remodeling, cell proliferation, cell migration, and apoptosis were identified. These findings suggest that a panel of miRNAs may regulate multiple and various steps of the metastasis cascade by targeting metastasis-associated genes. Since these six miRNAs are predicted to target tumor-associated genes, it is likely that they contribute to the metastatic potential of cervical cancer and may aid in prognosis or molecular therapy.

Differential MicroRNA Expression Between Gastric Cancer Tissue and Non-cancerous Gastric Mucosa According to Helicobacter pylori Status

  • Lee, Jung Won;Kim, Nayoung;Park, Ji Hyun;Kim, Hee Jin;Chang, Hyun;Kim, Jung Min;Kim, Jin-Wook;Lee, Dong Ho
    • Journal of Cancer Prevention
    • /
    • 제22권1호
    • /
    • pp.33-39
    • /
    • 2017
  • Background: MicroRNAs (miRNAs) are key post-translational mechanisms which can regulate gene expression in gastric carcinogenesis. To identify miRNAs responsible for gastric carcinogenesis, we compared expression levels of miRNAs between gastric cancer tissue and non-cancerous gastric mucosa according to Helicobacter pylori status. Methods: Total RNA was extracted from the cancerous regions of formalin-fixed, paraffin-embedded tissues of H. pylori-positive (n = 8) or H. pylori-negative (n = 8) patients with an intestinal type of gastric cancer. RNA expression was analyzed using a 3,523 miRNA profiling microarray based on the Sanger miRBase. Validation analysis was performed using TaqMan miRNA assays for biopsy samples from 107 patients consisted of control and gastric cancer with or without H. pylori. And then, expression levels of miRNAs were compared according to subgroups. Results: A total of 156 miRNAs in the aberrant miRNA profiles across the miRNA microarray showed differential expression (at least a 2-fold change, P < 0.05) in cancer tissue, compared to noncancerous mucosa in both of H. pylori-negative and -positive samples. After 10 promising miRNAs were selected, validations by TaqMan miRNA assays confirmed that two miRNAs (hsa-miR-135b-5p and hsa-miR-196a-5p) were significantly increased and one miRNA (hsa-miR-145-5p) decreased in cancer tissue compared to non-cancerous gastric mucosa at H. pylori-negative group. For H. pylori-positive group, three miRNAs (hsa-miR-18a-5p, hsa-miR-135b-5p, and hsa-miR-196a-5p) were increased in cancer tissue. hsa-miR-135b-5p and hsa-miR-196a-5p were increased in gastric cancer in both of H. pylori-negative and -positive. Conclusions: miRNA expression of the gastric cancer implies that different but partially common gastric cancer carcinogenic mechanisms might exist according to H. pylori status.

파브리병의 바이오마커 발굴을 위한 파브리 마우스와 세포모델에서의 microRNA 발현 분석 (MicroRNA Expression Profiling in Cell and Mouse Models of Fabry Disease to Identify Biomarkers for Fabry Disease Nephropathy)

  • 정남희;박세영;전여진;최윤영;정성철
    • 대한유전성대사질환학회지
    • /
    • 제15권3호
    • /
    • pp.127-137
    • /
    • 2015
  • 본 연구에서는 파브리병의 마우스 모델과 세포모델을 대상으로 miRNA expression microarray를 적용시켜 질환 모델과 정상 대조군 간의 전체 miRNA의 발현 차이를 조사하였고, 발현량에서 차이를 보인 특정 miRNA를 선별한 후, 해당 miRNA의 표적 유전자의 발현량 변화를 살펴보아 파브리병의 신장병변에 대한 바이오마커 발굴과 발병기전을 알아보고자 하였다. MicroRNA array 결과, 파브리 마우스 신장 조직의 경우, 1,247개의 분석 대상 miRNA 중 5개가 발현이 증가되어 있으며 3개가 발현이 감소되어 있음을 확인하였다. 그 중에서 miR-149-5p의 발현이 파브리 마우스의 신장에서 2배 이상 감소되어 있으며, 특히 35주령 이하의 파브리 마우스에서 이러한 감소현상이 나타남을 확인하였고, 또한 lyso-Gb3를 처리하여 배양한 SV40 MES 13 세포에서도 miR-149-5p의 발현이 감소됨을 알 수 있었다. miR-149-5p의 발현감소는 EMT와 관련된 유전자의 발현을 증가시킴을 확인하였다. 본 연구를 통해 miR-149-5p의 생체지표로서의 가능성과 함께 miR-149-5p의 발현감소가 EMT를 통한 파브리병에서의 사구체 섬유화에 관여할 것이라는 가능성을 제시하고 있다.

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M.;Hassan, Zeinab K.;Zekri, Abdel Rahman N.;Gaber, Ayman A.;Rejaie, Salem S. Al;Sayed-Ahmed, Mohamed M.;Shabanah, Othman Al
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.591-598
    • /
    • 2012
  • Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Circular RNA expression profiles in the porcine liver of two distinct phenotype pig breeds

  • Huang, Minjie;Shen, Yifei;Mao, Haiguang;Chen, Lixing;Chen, Jiucheng;Guo, Xiaoling;Xu, Ningying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권6호
    • /
    • pp.812-819
    • /
    • 2018
  • Objective: An experiment was conducted to identify and characterize the circular RNA expression and metabolic characteristics in the liver of Jinhua pigs and Landrace pigs. Methods: Three Jinhua pigs and three Landrace pigs respectively at 70-day were slaughtered to collect the liver tissue samples. Immediately after slaughter, blood samples were taken to detect serum biochemical indicators. Total RNA extracted from liver tissue samples were used to prepare the library and then sequence on HiSeq 2500. Bioinformatic methods were employed to analyze sequence data to identify the circRNAs and predict the potential roles of differentially expressed circRNAs between the two breeds. Results: Significant differences in physiological and biochemical traits were observed between growing Jinhua and Landrace pigs. We identified 84,864 circRNA candidates in two breeds and 366 circRNAs were detected as significantly differentially expressed. Their host genes are involved in lipid biosynthetic and metabolic processes according to the gene ontology analysis and associated with metabolic pathways. Conclusion: Our research represents the first description of circRNA profiles in the porcine liver from two divergent phenotype pigs. The predicted miRNA-circRNA interaction provides important basis for miRNA-circRNA relationships in the porcine liver. These data expand the repertories of porcine circRNA and are conducive to understanding the possible molecular mechanisms involved in miRNA and circRNA. Our study provides basic data for further research of the biological functions of circRNAs in the porcine liver.

Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells

  • Zhou, Jue-Yu;Ma, Wen-Li;Liang, Shuang;Zeng, Ye;Shi, Rong;Yu, Hai-Lang;Xiao, Wei-Wei;Zheng, Wen-Ling
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.593-598
    • /
    • 2009
  • Cell cycle progression is regulated by both transcriptional and post-transcriptional mechanisms. MicroRNAs (miRNAs) emerge as a new class of small non-coding RNA regulators of cell cycle as recent evidence suggests. It is hypothesized that expression of specific miRNAs oscillates orderly along with cell cycle progression. However, the oscillated expression patterns of many candidate miRNAs have yet to be determined. Here, we describe miRNA expression profiling in double-thymidine synchronized HeLa cells as cell cycle progresses. Twenty-five differentially expressed miRNAs were classified into five groups based on their cell cycle-dependent expression patterns. The cyclic expression of six miRNAs (miR-221, let-7a, miR-21, miR-34a, miR-24, miR-376b) was validated by real-time quantitative RT-PCR (qRT-PCR). These results suggest that specific miRNAs, along with other key factors are required for maintaining and regulating proper cell cycle progression. The study deepens our understanding on cell cycle regulation.

Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

  • Al-Husseini, Wijdan;Chen, Yizhou;Gondro, Cedric;Herd, Robert M.;Gibson, John P.;Arthur, Paul F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1371-1382
    • /
    • 2016
  • MicroRNAs (miRNAs) are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI) and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1). We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21). We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI give some insights into liver miRNAs regulating physiological pathways underlying variation in this measure of feed efficiency in bovines.