• Title/Summary/Keyword: MgO substrate

Search Result 391, Processing Time 0.039 seconds

Growth and Characteristics of YIG, Bi:YIG, TbBi:YIG Single Crystal Thick Films (YIG, Bi:YIG, TbBi:YIG 단결정 후막의 성장과 특성)

  • 윤석규;김근영;김명진;이형만;김회경;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.672-676
    • /
    • 2003
  • The single crystalline thick films of Y$_3$Fe$\sub$5/O$\sub$12/(YIG), Y$_3$Fe$\sub$5/O$\sub$12/(Bi:YIG), (TbBi)$_3$(FeAlGa)$\sub$5/O$\sub$12/ (TbBi:YIG) were grown on (GdCa)$_3$(GaMgZr)$\sub$5/O$\sub$12/ (SGGG) by Liquid Phase Epitaxy (LPE). The change of lattice mismatch, Bi concentration, characteristic of magnetic and surface morphology were investigated in the thick film growth as a function of species and amount of chemical element, while substrate rotation speed, supercooling and growth time were kept constant. It was observed that the lattice constant of garnet single crystalline thick films of TbBi:YIG (12.500 ${\AA}$) is closed to the one of the substrate (12.496 ${\AA}$). Besides magnetic field of saturation exhibits excellent results (150 Oe).

Characteristics of PLT thin films by rf magnetron sputtering (고주파 마그네트론 스펏터링법으로 제조한 PLT 박막의 특성)

  • Choi, B.J.;Park, J.H.;Kim, Y.J.;Choi, S.Y.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.37-42
    • /
    • 1995
  • The PLT thin films on MgO substrate have been fabricated by RF magnetron sputtering and the dependence of properties on fabrication conditions have been studied. The PbO-rich target was used and the optimum fabrication conditions of the PLT thin films were such that substrate temperature, working pressure, $Ar/O_{2}$ ratio, and rf power was $640^{\circ}C$, 10 mTorr, 10:1, and $1.7\;W/cm^{2}$, repectively. In these conditions, the PLT thin film showed the deposition rate of $62.5\;{\AA}/min$, the Pb/Ti ratio of 1/2, and the dielectric constant of 200. The PLT thin film showed good c-axis orientation and crystalinity according to XRD and SEM analysis.

  • PDF

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Electrical and Optical Characteristics of Plasma Display Panel Fabricated by Vacuum In-line Sealing (진공 인라인 실장에 의해 제작된 플라즈마 디스플레이 패널의 전기적ㆍ광학적 특성)

  • Park, Sung-Hyun;Lee, Neung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.344-349
    • /
    • 2005
  • The optical and electrical characteristics of plasma display panel(PDP) using the vacuum in-line sealing technology compared with the conventional sealing process in this research. This PDP consisted of MgO protecting layer by e-beam evaporation and battier rib, transparent dielectric layer, dielectric layer, and electrodes by screen printer and then sealed off on Ne-Xe(4 %) 400 Torr and 430。C. The brightness and luminous efficiency were good as the base vacuum level was higher, and it was to check the advantage of high vacuum level sealing, one of the strong points of the vacuum in-line sealing process. However, the brightness and luminous efficiency was dropped sharply because of a crack on MgO protecting layer by the difference of the expansion and contraction stress on high temperature in the vacuum states between MgO and substrate. Fortunately, the crack was prevented by MgO was deposited on higher temperature than 300。C. Finally, the PDP, was fabricated by the vacuum in-line sealing process, resulted the lower brightness than processing only the thermal annealing treatment in the vacuum chamber, but the luminous efficiency was increased by the reducing power consumption with the decreasing luminous current. The vacuum in-line sealing technology was not to need the additional thermal annealing process and could reduce the fabrication process and bring the excellent optical and electrical properties without the crack of MgO protecting layer than the conventional sealing process.

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF

Secondary Electron Emission of ZnO Films

  • Choi, Jinsung;Lee, Sung Kwang;Choi, Joon Ho;Choi, Eun Ha;Jung, Ranju;Kim, Yunki
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.273-277
    • /
    • 2015
  • We investigated secondary electron emission characteristics of ZnO thin films prepared by pulsed laser deposition method with respect to the ambient oxygen pressure and the substrate temperature during the deposition. X-ray diffraction, UV-Vis spectrometry, atomic force microscopy, and ${\gamma}$-FIB were used to examine the structural, optical transmission, surface morphology, and secondary electron emission properties of the films, respectively. The secondary electron emission coefficient of the ZnO films increases as the O/Zn ratio of the films increases which was thought to result from either the ambient oxygen pressure increase or the substrate temperature decrease and as the grain size of the films decreases. It was confirmed that ZnO has better secondary electron emission characteristics than those of MgO, which is currently widely used as a material for PDP protecting layers.

Effect of Acvated Oxygen Plasma on the Crystallinity and Superconductivity of $Yba_2Cu_3-O_{7-x}$ Thin Films Prepated by Reactive Co-evaporation method

  • Chang, Ho-Jung;Kim, Byoung-Chul;Akihama, Ryozo;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.280-286
    • /
    • 1994
  • As-grown $YBa_2Cu_3O_{7-x}$ films on MgO(100)substrates were prepated by a reactive co-evaporation method, and effects of activated oxygen plasma on the crystallinity and superconductivity at substrate temperature ranging from $450^{\circ}C$ to $590^{\circ}C$ were investigated. The film deposited under the activated oxygen plasma at the substrate temperature of $590^{\circ}C$ had a single crystal phase. Whereas, when films were deposited under only oxygen gas, they were not in perfect single crystal phase but with slight polycrystalline nature. When the substrate temperature was $590^{\circ}C$, $Tc_{zero}$'s were 83K and 80K for films with and without activated oxygen plasma, respectively. The critical temperature, the crystal structure and the surface morphology of as-grown films were found to be insensitive to the activated oxygen plasma which is introduced during deposition instead of oxygen gas, but the crystalline quality was improved somewhat by the introduction by the introduction of actvated oxygen plasma.

  • PDF

X-Ray Photoelectron Spectroscopy Studies of Pd Supported MgO/Mg (X-선 광전자분광법을 이용한 MgO/Mg 표면에 증착된 Pd의 분석)

  • Tai, Wei-Sheng;Seo, Hyun-Ook;Kim, Kwang-Dae;Kim, Young-Dok
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.281-287
    • /
    • 2009
  • Pd was deposited on magnesium-oxide-covered magnesium ribon substrate by metal thermal evaporation method in high vacuum. The electronic and chemical properties of Pd samples with different coverages were studied using in-situ X-ray Photoelctron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (SEM). For relatively lower amounts of Pd deposited(< 1nm), separate Pd particles could be observed, whereas at higher Pd coverages, Pd thin films caused by agglomeration of Pd nanoparticles was found. The metal support interaction with Pd-support was observed. The Pd atoms on the metal oxide/metal interface were partially negative charged by charge transfer.

Effect of Electrolyte Composition on Corrosion Behavior of PEO Treated AZ91 Mg Alloy

  • Park, Kyeong Jin;Lee, Jae Ho
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.227-231
    • /
    • 2009
  • Mg and Mg alloys have been used for lots of applications, including automobile industry, aerospace, mobile phone and computer parts owing to low density. However, Mg and Mg alloys have a restricted application because of poor corrosion properties. Thus, improved surface treatments are required to produce protective films that protect the substrate from corrosive environments. Environmental friendly Plasma Electrolytic Oxidation (PEO) has been widely investigated on magnesium alloys. PEO process combines electrochemical oxidation with plasma treatment in the aqueous solution. In this study, AZ91 Mg alloys were treated by PEO process in controlling the current with PC condition and treated time, concentration of NaF, NaOH, and $Na_2SiO_3$. The surface morphology and phase composition were analyzed using SEM, EDS and XRD. The potentiodynamic polarization tests were carried out for the analysis of corrosion properties of specimen. Additionally, salt spray tests were carried out to examine and compare the corrosion properties of the PEO treated Mg alloys.