• Title/Summary/Keyword: Mg-Ca alloy

Search Result 91, Processing Time 0.026 seconds

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery (주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성)

  • Oh, KkochNim;Lee, Kyu Hyuk;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.

Microstructures and Mechanical Properties of Diecast 0.7wt% CaO added Eco-Mg Parts (0.7wt% CaO 첨가 AZ91D Eco-Mg 다이캐스팅 부품의 미세조직 및 기계적 특성)

  • Seo, Jung-Ho;Lim, Hyun-Kyu;Kim, Shae-K.
    • Journal of Korea Foundry Society
    • /
    • v.30 no.6
    • /
    • pp.224-230
    • /
    • 2010
  • To prevent oxidation of Mg melt, $SF_6$ gas has been generally used for Mg alloys during melting and casting as a cover gas. The use of $SF_6$ gas, however, will be restricted owing to its crucial impact on global warming. Non-$SF_6$ process during melting and casting in diecasting industry has been proved with Eco-Mg alloys by a simple addition of small amount of CaO into Mg alloys. This paper shows non-$SF_6$ diecasting procedures for 0.7wt% CaO added AZ91D Eco-Mg alloys. Cold-chamber diecasting was performed under $CO_2$ atmosphere without $SF_6$ gas. An increment of mechanical properties, especially strength and ductility of Eco-Mg alloys is, in part, due to high-quality melt, refined grain size and $Al_2Ca$ second phase strengthening. Microstructures and mechanical properties of 0.7wt% CaO added AZ91D Eco-Mg alloys are evaluated in comparison with those of conventional AZ91D Mg alloy.

The Effect of Calcium Oxide on Oxidation Resistance of Magnesium alloy (마그네슘합금의 산화저항성에 미치는 산화칼슘 첨가의 영향)

  • Kim, Kibeom;Kim, Sangpil;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.129-134
    • /
    • 2020
  • Due to excellent properties such as high specific strength and low density, application of magnesium alloys have been rapidly increased. However, magnesium alloy has a serious problem that is easily oxidized when exposed to high-temperature. For this reason, magnesium alloys have been generally used for SF6 gas such as protective cover gas in casting and melting, but it has been reported that this gas has a serious influence on global warming. Therefore, many researchers have been studied to improve the oxidation resistance of magnesium alloy. It was reported that addition of Be, Ca and CaO in magnesium alloy can improve the oxidation properties. In this study, the possibility of improving the oxidation resistance by adding CaO extracted from oyster shells was investigated. Oyster shells were completely decomposed into CaO and CO2 by annealing. With the addition of CaO, a coexistence region of MgO + CaO was formed in the oxide layer and its thickness was also reduced.

Mechanical Properties and Microstructure of Mg-Zn-(Mn)-Ca Alloys (Mg-Zn-(Mn)-Ca 합금의 미세조직 및 기계적성질)

  • Eom, Jeong-Pil;Cha, Dong-Deuk;Lim, Su-Guen;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • The microstructure and tensile properties of Mg-Zn-Ca and Mg-Zn-Mn-Ca alloys have been investigated. The alloys were obtained by melting in a low carbon crucible coated with boron nitride under an Ar gas atmosphere to prevent oxidation and combustion. The Mg alloy melt was cast into the metallic mold at room temperature, and cooling part was located at the bottom of mold. The phase formed during solidification of the Mg-Zn-(Mn) alloys containing 0.5%Ca is $Ca_2Mg_6Zn_3$. The yield strength and ultimate tensile strength of the alloys increased with increasing Zn content, but the ductility did not change with increasing Zn content. The addition of Mn improves the yield strength and ultimate tensile strength of the alloys, but the ductility did not change. Tensile fracture of the alloys revealed brittle failure, with cracking along the $Ca_2Mg_6Zn_3$ phase. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$.

  • PDF

Improvement in Mechanical Properties of Cast Magnesium Alloy through Solid-solution Hardening and Grain Refinement (고용 강화 및 결정립 미세화를 통한 마그네슘 합금 주조재의 기계적 물성 향상)

  • Kim, Sang-Hoon;Moon, Byoung-Gi;You, Bong-Sun;Park, Sung-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.207-216
    • /
    • 2017
  • This study investigated the effects of the addition of Zn, Ca, and SiC on the microstructure and mechanical properties of Mg-Al alloys. The tensile properties of homogenized Mg-xAl (x = 6, 7, 8, and 9 wt.%) alloys increased with increasing Zn content by the solid-solution strengthening effect. However, when the added Zn content exceeded the solubility limit, the strength and ductility of the alloys decreased greatly owing to premature fracture caused by undissolved coarse particles or local melting. Among the Mg-xAl-yZn alloys tested in this study, the AZ74 alloy showed the best tensile properties. However, from the viewpoints of the thermal stability, castability, and tensile properties, the AZ92 alloy was deemed to be the most suitable cast alloy. Moreover, the addition of a small amount (0.17 wt.%) of SiC reduced the average grain size of the AZ91 alloy significantly, from $430{\mu}m$ to $73{\mu}m$. As a result, both the strength and the elongation of the AZ91 alloy increased considerably by the grain-boundary hardening effect and the suppression of twinning behavior, respectively. On the other hand, the addition of Ca (0.5-1.5 wt.%) and a combined addition of Ca (0.5-1.5 wt.%) and SiC (0.17 wt.%) increased the average grain size of the AZ91 alloy, which resulted in a decrease in its tensile properties. The SiC-added AZ92 alloy exhibited excellent tensile properties (YS 125 MPa, UTS 282 MPa, and EL 12.3%), which were much higher than those of commercial AZ91 alloy (YS 93 MPa, UTS 192 MPa, and EL 7.0%). The fluidity of the SiC-added AZ92 alloy was slightly lower than that of the AZ91 alloy because of the expansion of the solid-liquid coexistence region in the former. However, the SiC-added AZ92 alloy showed better hot-tearing resistance than the AZ91 alloy owing to its refined grain structure.

High Temperature Oxidation Behavior of Mg-6%Al-1%Zn-1%CaO Alloys

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • The magnesium-base AZ61 alloy was cast while adding 1% CaO powder into the melt. It was hot extruded, and oxidized at $550-650^{\circ}C$ in air in order to study its microstructure and oxidation behavior. Initially added CaO powder reacted with Al in the melt to $Al_2Ca$ particles that aligned along the extrusion direction. The formed $Al_2Ca$ particles increased the oxidation resistance through forming the superficial CaO scale at the upper part of the thin MgO oxide scale.

Grain Refinement and Mechanical Properties of AM60 Mg Alloy by $CaCN_2$ Addition (Ca$CN_2$ 첨가에 의한 AM60 마그네슘 합금의 결정립 미세화 및 기계적 성질)

  • Eom, Jeong-Pil;Jeong, Seong-Kyu;Lim, Su-Geun;Shin, Hee-Taek;Jeong, Deuk-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.383-388
    • /
    • 1998
  • Effects of $CaCN_2$ addition on the grain refinement in the AM60 magnesium ingots were investigated. The effects of the $CaCN_2$ are estimated with different inoculation temperatures, inoculation contents, and holding time to find out the optimum condition. AM60 alloy was melted in the low carbon steel crucible by cylindrical electric furnace under an argon atmosphere. The melting and casting apparatus is specially designed for magnesium alloys. The grain size of AM60 magnesium alloy decreased significantly with an increase in $CaCN_2$ content and, at 0.8 wt% $CaCN_2$ or more, grain size becomes constant at about $85 {\mu}m$. The optimum condition was obtained in the 0.8 wt% $CaCN_2$ for holding molten metal of 30 min. at the temperature of $710^{\circ}C$. The tensile properties of AM60 magnesium alloys were improved due to grain refinement by addition of $CaCN_2$. In the optimum condition, the yield strength, tensile strength and elongation were ${\sigma}_{0.2}=107 MPa$, ${\sigma}_{T.S}=234 MPa$ and e=14.2%. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$. The strain-hardening exponent, n and strength coefficient, K obtained in the 0.8 wt% $CaCN_2$ added AM 60 magnesium alloy were n=0.21 and K=390 MPa.

  • PDF

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Grain Growth Behavior of Heat Treated Mg-0.6wt.%Zn-0.6wt.%Ca Alloy Sheet Manufactured via Twin Roll Casting and Hot Rolling (트윈롤 주조 후 열간압연된 Mg-0.6wt.%Zn-0.6wt.%Ca 합금 판재의 열처리에 따른 결정립 성장 거동)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.74-81
    • /
    • 2022
  • This study aims to mitigate the microstructural heterogeneity arising from the manufacture of magnesium alloy plates using the twin roll casting (TRC) process. Homogenization was introduced through hot rolling and heat treatment, followed by confirmation of observed changes in the microstructure. Following the TRC process, the hot rolled 2mm plate exhibited a dendritic cast structure tilted in the roll rotation direction, while central segregation were developed. This nonuniform structure and central segregation disappeared upon heat treatment, followed by recrystallization to form uniform and fine grains. Abnormal grain growth (AGG) was observed over the course of heat treatment; grains exhibiting AGG occupied up to 75% of the total area after having held the sample at 400℃ for 64 h. The formation of coarse grains was also observed during heat treatment at 340℃ over a relatively long duration, though the maximum grain size was significantly smaller than that corresponding to the heat treatment at 400℃. AGG in the 400℃ heat treatment occurred because of movement of the grain boundary, which had been fixed prior as a result of the grain boundary fixing effect of the precipitation phase. The re-dissolution of the Ca2Mg5Zn5 precipitated phase over the long duration of the high-temperature annealing process caused the surrounding grains to disappear and regrow.

Distribution Behavior of Ni between CaO-SiO2-Al2O3-MgO Slag and Cu-Ni Alloy (CaO-SiO2-Al2O3-MgO 슬래그와 Cu-Ni합금 사이의 Ni 분배거동)

  • Han, Bo-Ram;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • To obtain the fundamental information on the dissolution of nickel into the slag in the pyrometallurgical processes for treatment of wasted PCB, the distribution ratios of nickel between CaO-$SiO_2-Al_2O_3$-MgO slag and copper-5 wt%Ni alloy were measured at 1623 K to 1823 K under a controlled $CO_2$-CO atmosphere. The distribution ratio of Ni increased linearly with increasing oxygen partial pressure. Therefore, the dissolution reaction of nickel into the slags could be described by the following equation; $$Ni(l)_{metal}+\frac{1}{2}O_2(g)NiO(l)_{slag}$$ The distribution ratio of Ni increased linearly with increasing content of basic oxides(CaO and MgO) in slag. However, the distribution ratio of Ni decreased linearly with increasing temperature. From these results, the empirical equation of distribution ratio of Ni was obtained by the following equation from the analysis of experimental conditions by multiple regression. $${\log}L_{Ni}=0.4000{\log}P_{O2}-5.1{\times}10^{-4}T+0.3375\(\frac{X_{CaO}+X_{MgO}}{X_{SiO2}}\)$$