• Title/Summary/Keyword: Mg nanoparticles

Search Result 177, Processing Time 0.025 seconds

Engineering and Economic Evaluation of Production of MgO Nanoparticles using a Physicochemical Method

  • Priatna, Deri;Nandiyanto, Asep Bayu Dani
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2019
  • We conducted research to evaluate economically and engineering about the synthesis of Magnesium Oxide, MgO, nanoparticles using physicochemical methods. The method used was economic evaluation by calculating GPM, BEP, PBP, and CNPV. The other method used was engineering perspective. MgO nanoparticles were synthesized by reacting Mg(NO3)2 and NaOH with a mole ratio 1: 2. Mg(OH)2 formed was heated and calcined to remove water content and to oxidation to form MgO. An economic evaluation by calculating GPM and CNPV for the production of MgO nanoparticles on an industrial scale shows that the payback period (PBP) occur in the third year and profits increase each year. Tax variations show that the higher of tax, the lower profits received. When there was an increase of selling prices, the profit was greater. The variable cost used is the price of raw material. When there was an increased in the variable cost price, the payback period was longer and the profits was reduced. The benefit of this research is knowing the industrial production of MgO nanoparticles is beneficial. The function of MgO nanoparticles is a material for the manufacture of ceramics and can be used as an antimicrobial in the water filtration process.

Evaluation of the efficiency of chitosan and silver nanoparticles in the treatment of lice experimental infestation in local chickens

  • Youssef Qasim Mohammed;Sadiya Aziz Anah
    • Korean Journal of Veterinary Research
    • /
    • v.64 no.2
    • /
    • pp.12.1-12.6
    • /
    • 2024
  • The current study aimed to determine the effect of silver and chitosan nanoparticles of size 10 to 30 nm on the dead of lice in vitro and in vivo to determine the optimal time and concentration to combat chicken lice. One hundred local chickens Gallus gallus domesticus were collected from Al-Diwaniyah province and 6 species of local chicken lice were isolated: Menacanthus stramineus, Menacanthus pallidullus, Menacanthus cornutus, Goniodes gigas, Cuclotogaster heterographus and Bonomiella columbae. The results of treating lice with chitosan and silver nanoparticles at concentrations (40, 60, and 80 mg/mL) in vitro and at different periods (5, 10, 15, and 30 minutes) after treatment showed that chitosan and silver nanoparticles at a concentration of 80 mg/mL are the most effective in killing lice. The dead rate of lice reached 100% after 15 minutes of treatment with chitosan nanoparticles and 100% in the case of silver nanoparticles after 30 minutes. The results of spraying chitosan and silver nanoparticles on the body of chickens infected with lice experimentally, based on the relative therapeutic efficacy within 30 minutes, indicated that silver nanoparticles were the most effective in completely killing lice in the group treated with a concentration of 80 mg/kg after 30 minutes, where the percentage of therapeutic efficacy was 96.7%. This was followed by chitosan nanoparticles at a concentration of 80 mg/kg, and the percentage of therapeutic efficiency was 91.5%. Chitosan and silver nanocomposite have a promising effect in the elimination of lice infestation in chickens.

Formation and Hydrogen Absorption Properties of Intermetallic Mg-Ni Compound Nanoparticles (Mg-Ni 금속 간 화합물 나노입자의 형성과 수소저장 특성)

  • BAE, YOOGEUN;HWANG, CHULMIN;KIM, JONGSOO;DONG, XING LONG;KIM, SEWOONG;JUNG, YOUNGUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.3
    • /
    • pp.238-245
    • /
    • 2017
  • Mg-Ni nanoparticles were synthesized by a physical vapor condensation method (DC arc-discharge) in a mixture of argon and hydrogen atmosphere, using compressed mixture of micro powders as the raw materials. The crystal phases, morphology, and microstructures of nanoparticles were analyzed by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compounds of $Mg_2Ni$ and $Mg_2Ni$ formed with existence of phases of Mg, Ni, and MgO in Mg-Ni nanoparticles. After one cycle of hydrogen absorption/desorption process (activation treatment), Mg-Ni nanoparticles exhibited excellent hydrogen absorption properties. $Mg_2Ni$ phase became the main phase by aphase transformation during the hydrogen treatments. The phenomenon of refinement of grain size in the nanoparticle was also observed after the hydrogen absorption/desorption processes, which was attributed to the effect of volume expansion/shrinkage and subsequent break of nanoparticles. Maximum hydrogen absorption contents are 1.75, 2.21 and 2.77 wt.% at 523, 573 and 623 K, respectively.

Synthesis of Ba(Mg1/3Ta2/3)O3 Nanoparticles by a Hydrothermal Process (수열합성법에 의한 Ba(Mg1/3Ta2/3)O3 나노분말 합성)

  • Kim, Rak-Hee;Son, Jung-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.16 no.6
    • /
    • pp.373-376
    • /
    • 2006
  • [ $Ba(Mg_{1/3}Ta_{2/3})O_3$ ] nanoparticles were synthesized in water solution under mild temperature and pressure conditions by precipitation from $Ba(NO_3),\;Mg(NO_3)_2{\cdot}6H_2O\;and\;TaCl_5$ with aqueous potassium hydroxide. The average size and distribution of the synthesized $Ba(Mg_{1/3}Ta_{2/3})O_3$ nanoparticles were below 100 nm and broad, respectively. The phase of synthesized particles was crystalline reacted at $170^{\circ}C$ for 4 h. The characterization of $Ba(Mg_{1/3}Ta_{2/3})O_3$ nanoparticles were studied using XRD, SEM, and TEM.

Growth of magnesium oxide nanoparticles onto graphene oxide nanosheets by sol-gel process

  • Lee, Ju Ran;Koo, Hye Young
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.206-209
    • /
    • 2013
  • Nanocomposites comprised of graphene oxide (GO) nanosheets and magnesium oxide (MgO) nanoparticles were synthesized by a sol-gel process. The synthesized samples were studied by X-ray powder diffraction, atomic force microscopy, transmission electron microscopy, and energy-dispersive X-ray analysis. The results show that the MgO nanoparticles, with an average diameter of 70 nm, are decorated uniformly on the surface of the GOs. By controlling the concentration of the MgO precursors and reaction cycles, it was possible to control the loading density and the size of the resulting MgO particles. Because the MgO particles are robustly anchored on the GO structure, the MgO/GOs nanocomposites will have future applications in the fields of adsorption and chemical sensing.

Preparation and Electrochemical Characteristics of Mg-Sn Nanoparticles as an Anode Material for Li-ion Batteries

  • Tulugan, Kelimu;Lei, Jun-Peng;Dong, Xin-Long;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.146-152
    • /
    • 2014
  • Mg-Sn nanoparticles were prepared by an arc-discharge method in a mixture atmosphere of argon and hydrogen gases. Phases, morphologies, and microstructures of the nanoparticles were investigated by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compound of $Mg_2Sn$ was generated and coexisted with metallic phases of Mg and Sn within nanoparticles. Basedon the model cell, the electrochemical properties were also explored by discharge-charge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. The initial capacity of the first cycle reached 430 mAh/g. Two visible plateaus at 0.2-0.3 and 0.5-0.75V were observed in the potential profiles, which can attributed to alloying/de-alloying reactions between Li and Mg2Sn, respectively.

Effect of Magnesium Nanoparticles on Graphite Oxide for Hydrogen Storage Behaviors (마그네슘입자가 담지된 그라파이트 옥사이드의 수소저장거동)

  • Lee, Seul-Yi;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.157.2-157.2
    • /
    • 2011
  • In this work, we prepared Mg nanoparticles loaded graphite oxide (Mg-G) as a function of Mg content in order to investigate hydrogen storage behaviors. The structure and morphology of the Mg-G samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The textural properties of the samples were evaluated using $N_2$/77 K adsorption isotherms. The hydrogen adsorption capacities were investigated at 298 K/10 MPa. As a result, the hydrogen adsorption capacities of the Mg-G were enhanced with increasing the Mg content. Therefore, it was found that the presence of Mg on graphite surfaces created hydrogen-favorable sites, resulting in enhancing the hydrogen adsorption capacity.

  • PDF

DFT Investigation of Phase Stability of Magnesium Alanate (Mg(AlH4)2) for Reversible Hydrogen Storage (가역적 수소 저장을 위한 마그네슘 알라네이트 (Mg(AlH4)2) 나노 입자 활용 : 밀도범함수이론 연구)

  • DONG-HEE LIM;EUNMIN BAE;YOUNG-SOO HAN
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.169-177
    • /
    • 2023
  • Phase stability diagrams were constructed for magnesium alanate (Mg(AlH4)2) nanoparticles to investigate the reversible hydrogen storage reaction by using density functional theory. Our findings indicate that bulk Mg(AlH4)2 shows favorable hydrogen release, but unfavorable hydrogen uptake (adsorption) reactions. However, for Mg(AlH4)2 nanoparticles, it was observed that hydrogen release and recharge can be achieved by controlling the particle size and temperature. Furthermore, by predicting the decomposition phase diagram of Mg(AlH4)2 nanoparticles with varying hydrogen partial pressure, it was discovered that reversible dehydrogenation reactions can occur even in relatively large nanoparticles by controlling the hydrogen partial pressure.

X-ray absorption spectroscopic study of MgFe2O4 nanoparticles

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Joon Kon;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.230.2-230.2
    • /
    • 2015
  • Nanoparticles of magnesium ferrite are used as a heterogeneous catalyst, humidity sensor, oxygen sensor and cure of local hyperthermia. These applications usually utilize the magnetic behavior of these nanoparticles. Moreover, magnetic properties of nanoferrites exhibit rather complex behavior compared to bulk ferrite. The magnetic properties of ferrites are complicated by spins at vortices, surface spins. Reports till date indicate strong dependency on the structural parameters, oxidation state of metal ions and their presence in octahedral and tetrahedral environment. Thus we have carried out investigation on magnesium ferrite nanoparticles in order to study coordination, oxidation state and structural distortion. For present work, magnesium ferrite nanoparticles were synthesized using nitrates of metal ions and citric acid. Fe L-edge spectra measured for these nanoparticles shows attributes of $Fe^{3+}$ in high spin state. Moreover O K-edge spectra for these nanoparticles exhibit spectral features that arises due to unoccupied states of O 2p character hybridized with metal ions. Mg K-edge spectra shows spectral features at 1304, 1307, 1311 and 1324 eV for nanoparticles obtained after annealing at 400, 500, 600, 800, 1000, and $1200^{\circ}C$. Apart from this, spectra for precursor and nanoparticles obtained at $300^{\circ}C$ exhibit a broad peak centered around 1305 eV. A shoulde rlike structure is present at 1301 eV in spectra for precursor. This feature does not appear after annealing. After annealing a small kink appear at ~1297 eV in Mg K-edge spectra for all nanoparticles. This indicates changes in local electronic structure during annealing of precursor. Observed behavior of change in local electronic structure will be discussed on the basis of existing theories.

  • PDF

Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications

  • Tomitaka, Asahi;Jeun, Min-Hong;Bae, Seong-Tae;Takemura, Yasushi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.164-168
    • /
    • 2011
  • Magnetic nanoparticles can potentially be used in drug delivery systems and for hyperthermia therapy. The applicability of $Fe_3O_4$, $CoFe_2O_4$, $MgFe_2O_4$, and $NiFe_2O_4$ nanoparticles for the same was studied by evaluating their magnetization, thermal efficiency, and biocompatibility. $Fe_3O_4$ and $CoFe_2O_4$ nanoparticles exhibited large magnetization. $Fe_3O_4$ and $NiFe_2O_4$ nanoparticles exhibited large induction heating. $MgFe_2O_4$ nanoparticles exhibited low magnetization compared to the other nanoparticles. $NiFe_2O_4$ nanoparticles were found to be cytotoxic, whereas the other nanoparticles were not cytotoxic. This study indicates that $Fe_3O_4$ nanoparticles could be the most suitable ones for hyperthermia therapy.