• Title/Summary/Keyword: Mg Alloy Sheet

Search Result 96, Processing Time 0.02 seconds

Influence of Tool Coating on Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature (금형 표면 처리가 AZ31B 마그네슘 합금의 온간 마찰 특성에 미치는 영향에 관한 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2021
  • The success of warm forming of Mg alloy sheet is greatly influenced by friction at elevated temperature, depending on the surface treatment of the tool. The tool coating affected the frictional characteristics of AZ31B Mg alloy sheet at elevated and room temperatures. The frictional behavior of the Mg alloy sheet at room temperature was not significantly affected by surface treatment conditions of the tool, but was significantly affected at elevated temperature. When the contact pressure is high, a few surface-treated tools exhibit a higher coefficient of friction than those without surface treatment. It is important to select the surface treatment conditions of the tool in order to ensure appropriate friction during warm forming of Mg alloy sheet.

Study of Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature (AZ31B 마그네슘 합금의 온간 마찰 특성 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.160-164
    • /
    • 2018
  • The success of warm forming of Mg alloy sheets is very dependent on its frictional behavior at elevated temperatures. The effects of contact pressure and sliding length on the frictional characteristics of AZ31B Mg alloy sheet were investigated at elevated temperature and at room temperature. The contact pressure range for the friction test was determined through FE analysis of the roof panel which is a candidate for Mg alloy application. According to the experimental results, the frictional behavior of the Mg alloy sheet is equally highly influenced by both sliding length and contact pressure at room temperature. At elevated temperatures, however, the sliding length has a more dominant influence on the frictional characteristics of the Mg alloy sheet than the contact pressure, if the contact pressure is lower than a certain level.

An Effect of Strain rate of Forming limits of Mg Alloy at Warm Sheet Forming (Mg합금 온간판재 성형시 성형한계에 미치는 변형률 속도의 영향)

  • Jung, J.H.;Kim, M.C.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.279-280
    • /
    • 2007
  • In this study, it is investigated that the effect of material properties such as various temperature, forming speed and strain rates on formability and forming limits of Mg alloy sheet in square cup deep drawing. Since the sheet metal forming of Mg alloy is perform at elevated temperature, the effect of strain rates related with the forming temperature and forming speed is very important factor for formability and forming limits. Therefore, the investigation for process variables is necessary to improve formability and forming limits. Also, the effects of strain rate and thickness transformation were studied by the experimental and FE analysis using the square cup deep drawing. The temperature, forming speed, and strain rates were investigated. Forming of Mg alloy takes consider into temperature, proper forming speed and strain-rate the formed parts were good without defects fur forming limits.

  • PDF

New Corrosion-Resistant Zn-Al-Mg Alloy Hot-Dip Galvanized Steel Sheet

  • Kohei Tokuda;Yasuto Goto;Mamoru Saito;Hiroshi Takebayashi;Takeshi Konishi;Yuto Fukuda;Fumiaki Nakamura;Koji Kawanishi;Kohei Ueda;Hidetoshi Shindo
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.121-130
    • /
    • 2024
  • In recent years, Zn-Al-Mg alloy galvanized steel sheets have been widely used as coated steel sheets to support social capital in the infrastructure field. A feature of Zn-Al-Mg alloy-coated steel sheets is that they provide a better corrosion protection period than Zn-coated steel sheets. In this study, the corrosion resistance of a new Zn-Al-Mg alloy-coated steel sheet was investigated and compared to that of conventional commercially available coated steel sheets. The investigation confirmed that increasing the Mg concentration in the Zn-Al-Mg-coated steel sheet improved corrosion resistance, which was more than 10 times that of the galvanized steel sheet specified in JIS G 3302. The study findings also confirmed that the corrosion resistance reached more than twice that of the coated steel sheet specified in JIS G 3323. If such galvanized steel sheets are applied to social infrastructures that are exposed to severely corrosive environments, the service life of the infrastructure might be extended.

Prediction of springback on cold forming of Mg-alloy (Mg 합금 판재 냉간 성형품의 탄성회복량 예측)

  • Lee Y. S.;Kim M. C.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.43-46
    • /
    • 2004
  • Since Mg alloy has many attractive advantages among the practically used metals, many researchers have been studied to develop useful process and material. However, study for sheet forming has not been a few because of low formability on room temperature. Formability and springback for AZ31 alloy sheet have been studied to develop the cold forming technology. The experimental and FE analysis were performed to analyzed the springback amounts by using a model of our on. A different three materials were used to investigate the effects of material characteristics. The springback amounts of Mg-alloy sheet formed part were larger than that of the other material.

  • PDF

Study on the Friction Characteristics for AZ31 Sheet as Various Surface Treatment of SKD11 (SKD 11 금형 표면처리에 따른 AZ31 판재 마찰 특성 연구)

  • Chang, S.H.;Heo, Y.M.;Shin, K.H.;Kim, H.K.;Jeon, Y.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.429-434
    • /
    • 2010
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn) sheet with a thickness of 0.8 mm. Friction tests at various temperatures(R.T. to $200^{\circ}C$) and at various holding forces in the 4 type molds were carried out to investigate the coefficient of friction. A warm drawing process with a local heating and cooling technique was developed in the Mg alloy sheet forming to improve formability because it is very difficult for Mg alloy to deform at room temperature by the conventional method. So, the coefficient of friction at various mold surface treatment conditions in this study was needed to develop the Mg alloy sheet forming technology.

Fabrication and Mechanical Characterization of the Mg-Zn-RE/Al1050 Clad Sheet (Mg-Zn-RE/Al1050 클래드재의 제조 및 기계적 특성)

  • Shin, Beomsoo;Yoon, Sockyeon;Ha, Changseong;Yun, Seungkwan;Bae, Donghyun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.116-121
    • /
    • 2010
  • The Mg-Zn-RE alloy cladded with the thin Al1050 sheet was fabricated by means of a roll bonding process at $280^{\circ}C$.Microstructures and mechanical properties of the clad sheets were investigated. After heat treatment at $230^{\circ}C$ for 30 min, an Mg-rich diffusion layer with about $2{\mu}m$ in thickness was developed at the Mg and Al interface. Tensile tests were carried out in a temperature range up to $300^{\circ}C$. The clad sheet exhibits superior elongation to failure not only at room temperature but also at elevated temperatures compared with those of the Mg alloy sheet. For the deformed specimens, interface debonding does not occur and the diffusion layer shows only a few cracks.

Measurement of Springback of AZ31B Mg Alloy Sheet in OSU Draw/bend Test (AZ31B 마그네슘 합금 판재의 OSU 드로우벤드 시험과 스프링 백 측정)

  • Choi, J.G.;Choi, S.C.;Lee, M.G.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.447-451
    • /
    • 2007
  • The springback characteristics of AZ31B magnesium alloy sheet was investigated in OSU draw/bend test Springback is the elastically-driven change of shape of a part after forming and it should be estimated and controlled to manufacture more precise products in sheet forming. Magnesium alloy sheets have unique mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening response. So, there will be a difference in the prediction of springback with symmetric mechanical properties for magnesium alloy sheets. In this work, the Strip draw/bend tests were conducted with various conditions - die radius, sheet thickness and controlled tensile force and the tendency of springback angle was observed from the tests.

A Study of Rolling Characterization on Mg Alloy Sheet (마그네슘 합금 판재의 압연특성연구)

  • Jeong, Y.G.;Lee, J.B.;Kim, W.J.;Lee, G.A.;Choi, S.;Jeong, H.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolling with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than those rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolled materials were coarse and inhomogeneous, on the contrary, those of the differential speed rolled were fine and homogeneous.

  • PDF

Measurement of Springback of AZ31B Mg Alloy Sheet in Draw/bend Test (AZ31B 마그네슘 합금 판재에 대한 드로우벤드 시험과 스프링백 측정)

  • Choi, J.G.;Lee, M.G.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.302-305
    • /
    • 2007
  • The springback characteristics of AZ31B magnesium alloy sheet was investigated in OSU draw/bend test. Springback is the elastically-driven change of shape of a part after forming and it should be estimated and controlled to manufacture more precise products in sheet forming. The demands are increasing for magnesium alloy sheet press forming, but the study on its springback characteristics is insufficient. Strip draw/bend tests were conducted with various conditions - die radius, sheet thickness and controlled tensile force. The springback angles were measured from 'sidewall curl' of deformed shape. The tendency of springback angle was observed from the tests.

  • PDF