• Title/Summary/Keyword: Mg 동위원소

Search Result 120, Processing Time 0.025 seconds

Establishment and application of standard-RSF for trace inorganic matter mass analysis using GD-MS (GD-MS 분석 장비를 활용한 극미량 무기물 질량 분석을 위한 표준RSF 구축 및 응용)

  • Jang, MinKyung;Yang, JaeYeol;Lee, JongHyeon;Yoon, JaeSik
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2018
  • The present study analyzed standard samples of three types of aluminum matrix certified reference materials (CRM) using GD-MS. Calibration curves were constructed for 13 elements (Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sn, and Pb), with the slope representing the relative sensitivity factor (RSF). The x- and y-axes of the calibration curve represented ion beam ratio (IBR) and the authenticated value of the standard sample, respectively. In order to evaluate precision and linearity of the calibration curve, RSD and the coefficient of determination were calculated. Curve RSD for every element reflected high precision (within 10 %). For most elements, the coefficient of determination was ${\geq}0.99$, indicating excellent linearity. However, vanadium, nickel, and gallium curves exhibited relatively low linearity (0.90~0.95), likely due to their narrow concentration ranges. Standard RSF was calculated using the slope of the curve generated for three types of CRM. Despite vanadium, nickel, and gallium exhibiting low coefficients of determination, their standard RSF resembled that of the three types of CRM. Therefore, the RSF method may be used for element quantitation. Standard iron matrix samples were analyzed to verify the applicability of the aluminum matrix standard RSF, as well as to calculate the RSD-estimated error of the measured value relative to the actual standard value. Six elements (Al, Si, V, Cr, Mn, and Ni) exhibited an RSD of approximately 30 %, while the RSD of Cu was 77 %. In general, Cu isotopes are subject to interference: $^{63}Cu$ to $^{54}Fe^{2+}-^{36}Ar$ and $^{65}Cu$ to $^{56}Fe-Al^{3+}$ interference. Thus, the influence of these impurities may have contributed to the high RSD value observed for Cu. To reliably identify copper, the resolution should be set at ${\geq}8000$. However, high resolutions are inappropriate for analyzing trace elements, as it lowers ion permeability. In conclusion, quantitation of even relatively low amounts of six elements (Al, Si, V, Cr, Mn, and Ni) is possible using this method.

Study on the Chemical Composition and Lead Isotope Ratios of Lead Glaze Used on Blue Tiles from Gyeoungbokgung Palace (경복궁 청기와에 사용된 납유의 화학조성과 납동위원소 특성연구)

  • So Jin Kim;Young Do Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.343-352
    • /
    • 2024
  • Composition analysis and lead isotope ratio analysis were conducted to determine the coloring machanism on lead glaze used in Gyeongbokgung Palace and the provenance of the lead used as a flux. 31 blue tiles were classified into green, blue, and yellow. The chemical analysis of lead glazes on the blue tiles revealed that Pb, Si, and Cu were the main components, and trace amounts of Fe, Ca, Mg, and Al were detected. The Cu content was high in blue lead glaze, while Cu was not detected in yellow or brown lead glaze which instead had high Fe content. Therefore, it was found that lead was used as a flux and copper oxide as a coloring agent in the production of lead glaze. In addition, the lead isotope ratios of the lead glaze used in the blue tiles of Gyeongbokgung palace were plotted in zone 3 on the distribution map of lead isotope ratios on the Korean Peninsula, which includes Chungcheong-do and Jeolla-do. It is presumed that the flux for the lead glaze was sourced from galena found in these regions. The lead isotope ratios of the green glaze from the Three Kingdoms and Unified Silla period were mostly located outside the Korean Peninsula, showing that the provenance of lead had changed. In particular, the lead isotope ratios of the green glaze from the Three Kingdoms and Unified Silla period suggest exchange with neighboring countries. Also the lead isotope ratios of the green glazes from the same temple are different, so it is believed that they were made at different times or in different workshops.

Origin of Manganese Carbonates in the Janggun Mine, South Korea (장군광산산(將軍鑛山産) 망간광물의 성인(成因)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.109-122
    • /
    • 1986
  • Mn-Pb-Zn-Ag deposits of the Janggun mine are hosted in the Cambro-Ordovician Janggun limestone mostly along the contacts of the Jurassic Chunyang granite. The deposits are represented by several ore pipes and steeply dipping lenticular bodies consisting of lower Pb-Zn-Ag sulfide ores and upper manganese carbonate and oxide ores. The former consists mainly of arsenic, antimony, silver, manganese, and tin-bearing sulfides, whereas the latter are characterized by hypogene rhodochrosite, and superficial manganese oxides including todorokite, nsutite, pyrolusite, cryptomelane, birnesite and janggunite. Origin of the upper manganese ore deposits has been a controversial subject among geologists for this mine: hydrothermal metasomatic vs. syngenetic sedimentary origin. Syngenetic advocators have proposed a new sedimentary rock, rhodochrostone, which is composed mainly of rhodochrosite in mineralogy. In the present study, carbon, oxygen and sulfur isotopic compositions were analayzed obtaining results as follows: Rhodochrosite minerals, (Mn, Ca, Mg, Fe) $CO_3$, from hydrothermal veins, massive sulfide ores and replacement ores in dolomitic limestone range in isotopic value from -4.2 to -6.3‰ in ${\delta}^{13}C$(PDB) and +7.6 to +12.9‰ in ${\delta}^{18}O$(SMOW) with a mean value of -5.3‰ in ${\delta}^{13}C$ and +10.7‰ in ${\delta}^{18}O$. The rhodochrosite bearing limestone and dolomitic limestone show average isotopic values of -1.5‰ in ${\delta}^{13}C$ and +17.5‰ in ${\delta}^{18}O$, which differ from those of the rhodochrosite mentioned above. This implies that the carbon and oxygen in ore fluids and host limestone were not derived from an identical source. ${\delta}^{34}S$ values of sulfide minerals exhibit a narrow range, +2.0 to +5.0‰ and isotopic temperature appeared to be about $288{\sim}343^{\circ}C$. Calculated initial isotopic values of rhodochrosite minerals, ${\delta}^{18}O_{H_2O}=+6.6$ to +10.6‰ and ${\delta}^{13}C_{CO_2}=-4.0$ to -5.1 ‰, strongly suggest that carbonate waters should be deep seated in origin. Isotopic data of manganese oxide ores derived from hypogene rhodochrosites suggest that the oxygen of the limestone host rock rather than those of meteoric waters contribute to form manganese oxide ores above the water table.

  • PDF

The Hydrochemical and Stable Isotope Characteristics of Shallow Groundwater Near the Gwangju Stream (광주천 인근 천부 지하수의 수리화학 및 안정동위원소 특성)

  • Yoon, Wook;Ji, Se-Jung;So, Chil-Sub
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.441-455
    • /
    • 2003
  • The most common water types are found to be Ca-$HCO_3$, Ca-Na-$HCO_3$ and Ca-Na-$HCO_3$-Cl in Gwangju groundwater. Groundwater near the Gwangju stream are characterized Ca-Cl water type, with over 50 mg/L of C1- and 400 ${\mu}$S/cm of EC. The systematic variation of $Cl^-$, $HCO_3^-$,- EC and ${\gamma}^{18}O$ values in groundwater with distance away from drainages is caused by streamwater infiltration. Stable isotope data indicate that ${\gamma}$D and ${\gamma}^{18}O$ values of groundwaters near drainages were enriched by evaporation effect, showing a equation of ${\gamma}$D=7. 1${\times}{\gamma}^{18}O$-1. ${\gamma}^{18}O$ values over -6${\textperthansand}$ are anomalous in the unconfined groundwater zones, which are influenced by the local surface water enriched in $^{18}O$ composition. Groundwater in highland shows remarkably light ${\gamma}^{18}O$ values below -8$\textperthousand$. The infiltration of streamwater is dominant in unconfined alluvium aquifer near drainages. ${\gamma}^{13}$CDIC values (-17.6∼-15.2$\textperthousand$) of groundwaters near drainages revealed that dissolved inorganic carbon (DIC) is predominantly originated from natural soil-derived $CO_2$. ${\gamma}^{15}N$ and ${\gamma}^{18}O$ values of nitrate are 0∼17.0${\textperthansand}$ and 6.6∼17.4${\textperthansand}$, respectively. Relationship between ${\gamma}^{15}N$ and ${\gamma}^{18}O$ shows a systematic isotopic fractionation caused by denitrification of 40∼60%, suggesting that the major source of groundwater nitrate originated from nitrate of soils, and mixing nitrate of soil and sewage or manure.

Oxygen Isotopic Ratios for Ultramafic Xenoliths from the Korean Peninsula (한반도 초염기성 포획암의 산소동위원소 비율)

  • Lee, Jeong-A;Kim, Kyuhan;Lee, Jong-Ik;Choo, Mikyung
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.28-40
    • /
    • 2013
  • This study examined the geochemical characteristics, equilibrium temperature and pressure conditions, and oxygen isotopic ratios of mantle xenoliths from the various geological sites of the Korean peninsula. The results are as follows: (1) The ultramafic xenoliths from the Korean peninsula mainly consist of typical high magnesium olivine (MgO : 49.12-50.95 wt.%, Mg value: 90.1-92.2), corresponding to worldwide Cenozoic ultramafic xenoliths in chemical compositions. (2) The pressure-temperature conditions of ultramafic xenoliths in the Korean peninsula are from 854 to $1016^{\circ}C$ and 4.6 to 24.4 kbar. (3) The oxygen isotopic ratios (${\delta}^{18}O$) for olivines in ultramafic xenoliths range from 5.06‰ to 5.51‰, which are relatively uniform oxygen isotopic values and overlapped by the values of N-MORB and upper mantle peridotite (${\delta}^{18}O$: $5.2{\pm}0.2$‰). However, olivines of the ultramafic xenoliths from the Baegdusan and Chejudo have a relatively wide ${\delta}^{18}O$ values ranging from 5.07 to 5.51‰ and 5.07 to 5.45‰, respectively. Based on the results, this study suggests that the high ${\delta}^{18}O$ signature of the Baegdusan xenoliths give a hint that ~5% of the oxygen in typical EM2 sources originally derived from recycled sediments.

Geochemical and Nd-Sr Isotope Studies for Foliated Granitoids and Mylonitized Gneisses from the Myeongho Area in Northeast Yecheon Shear Zone (예천전단대 북동부 명호지역 엽리상 화강암류와 압쇄 편마암류에 대한 지구화학 및 Nd-Sr 동위원소 연구)

  • Kim, Sung-Won;Lee, Chang-Yun;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.299-314
    • /
    • 2008
  • The NE-trending Honam shear zone is a broad, dextral strike-slip fault zone between the southern margin of the Okcheon Belt and the Precambrian Yeongnam Massif in South Korea and is parallel to the trend of Sinian deformation that is conspicuous in Far East Asia. In this paper, we report geochemical and isotopic(Sr and Nd) data of mylonitic quartz-muscovite Precambrian gneisses and surrounding foliated hornblende-biotite granitoids near the Myeongho area in the Yecheon Shear Zone, a representative segment of the Honam Shear Zone. Foliated hornblende-biotite granitoids commonly plot in the granodiorite field($SiO_2=61.9-67.1\;wt%$ and $Na_2O+K_2O=5.21-6.99\;wt%$) on $SiO_2$ vs. $Na_2O+K_2O$ discrimination diagram, whereas quartz-muscovite Precambrian orthogneisses plot in the granite field. The foliated hornblende-biotite granitoids are mostly calcic and calc-alkalic and are dominantly magnesian in a modified alkali-lime index(MALI) and Fe# [$=FeO_{total}(FeO_{total}+MgO)$] versus $SiO_2$ diagrams, which correspond with geochemical characteristics of Cordilleran Mesozoic batholiths. The foliated hornblende-biotite granitoids have molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 0.89 to 1.10 and are metaluminous to weakly peraluminous, indicating I type. In contrast, Paleoproterozoic orthogneisses have peraluminous compositions, with molar ratios of $Al_2O_3/(CaO+Na_2O+K_2O)$ ranging from 1.11 to 1.22. On trace element spider diagrams normalized to the primitive mantle, the large ion lithophile element(LILE) enrichments(Rb, Ba, Th and U) and negative Ta-Nb-P-Ti anomalies of foliated hornblende-biotite granitoids and mylonitized quartz-muscovite gneisses in the Yecheon Shear Zone are features common to subduction-related granitoids and are also found in granitoids from a crustal source derived from the arc crust of active continental margin. ${\varepsilon}_{Nd}(T)$ and initial Sr-ratio ratios of foliated hornblende-biotite granitoids with suggest the involvement of upper crust-derived melts in granitoid petrogenesis. Foliated hornblende-biotite granitoids in the study area, together with the Yeongju Batholith, show not changing contents of specific elements(Ti, P, Zr, V and Y) from shear zone to the area near the shear zone. These results suggest that no volume changes and geochemical alterations in fluid-rich foliated hornblende-biotite granitoids may occur during deformation, which mass transfer by fluid flow into the shear zone is equal to the mass transfer out of the shear zone.

Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Mineral (중.저준위 방사성폐기물 처분부지의 지구화학 특성 II. 암석 및 광물)

  • Kim, Geon-Young;Koh, Yong-Kwon;Choi, Byoung-Young;Shin, Seon-Ho;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.307-327
    • /
    • 2008
  • Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy(SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher $SiO_2$ content and lower MgO and $Fe_2O_3$ contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of $SiO_2$ content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower $SiO_2,\;Al_2O_3,\;Na_2O\;and\;K_2O$ contents, and higher CaO, $Fe_2O_3$ contents than the granodiorite region. Especially, because the differences in the CaO and $Na_2O$ distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that the fracture-filling minerals from the study area were affected by the hydrothermal solution as well as the simply water-rock interaction.

  • PDF

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Preparation and Certification of Rice Flour Reference Materials for Trace Elements Analysis (미량원소분석을 위한 쌀분말 기준물질의 제조 및 검정)

  • Cho, Kyung-Haeng;Park, Chang-Joon;Woo, Jin-Choon;Suh, Jung-Ki;Han, Myung-Sub;Lee, Jong-Hae
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 1998
  • Rice flour reference materials were prepared from the unpolished rice grown in Korea and certified for elemental composition. The reference materials consist of two samples containing normal and high level. The reference material at elevated level was prepared by spiking to the normal rice flour six toxic elements of As, Cd, Cu, Cr, Hg, Pb with $1.0{\mu}g/g$ on a dry weight basis. Homogeneity of the prepared materials was evaluated through the determination of Ca, Cu, Fe, Mn, Zn by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). Small variance of elemental composition among interbottled samples assured homogeneity of the prepared materials. The materials were decomposed by high pressure digestion and microwave digestion method. INAA, AAS, inductively coupled plasma-atomic absorption spectrometry (ICP-AES), ICP-mass spectrometry (MS) and vapour generation techniques were employed to analyze the reference materials. From this independent analytical results, the certified or reference values are determined for As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, P, Pb, Se, Zn.

  • PDF

Influence of Groundwater on the Hydrogeochemistry and the Origin of Oseepchun in Dogye Area, Korea (도계지역 오십천에서의 지하수 영향분석 - 수리지화학적 특성과 기원)

  • Hwang, Jeong Hwan;Song, Min Ho;Cho, Hea Ly;Woo, Nam C
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.167-179
    • /
    • 2016
  • Water quality of Oseepchun, Dogye area, was investigated quantitatively for its origin and hydrogeochemistry in relation to the influence of groundwater. Groundwater appears to be the principal source of Oseepchun from the water-quality monitoring data including redox potentials, composition of dissolved ions and their correlations, hydrogen and oxygen stable isotopic ratios, and the distribution and occurrence of contaminants. Water-quality type of the surface water was grouped by the water-rock interactions as $Ca-HCO_3$ type originated from carbonated bed-rocks in the Joseon Supergroup, (Ca, Mg)-$SO_4$ type related with dissolution of surfide minerals in coal beds of Pyeongan Supergroup, and (Ca, Mg)-($HCO_3$, $SO_4$) type of the mixed one. Locally water pollution occurs by high $SO_4$ from mine drainage and $NO_3$ from waste-treatment facility. Intensive precipitation in summer has no effect on the water type of Oseepchun, but increases the inflow of nitrate and chloride originated from land surface. Results of this study direct that groundwater-surface water interaction is intimate, and thus surface-water resource management should begin with groundwater characterization.