• 제목/요약/키워드: Methylation inhibitors

검색결과 21건 처리시간 0.027초

Cloning and characterization of polyA- RNA transcripts encoded by activated B1-like retrotransposons in mouse erythroleukemia MEL cells exposed to methylation inhibitors

  • Tezias, Sotirios S.;Tsiftsoglou, Asterios S.;Amanatiadou, Elsa P.;Vizirianakis, Ioannis S.
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.126-131
    • /
    • 2012
  • We have previously identified a DNA silent region located downstream of the 3'-end of the ${\beta}^{major}$ globin gene (designated B1-559) that contains a B1 retrotransposon, consensus binding sites for erythroid specific transcription factors and shares the capacity to act as promoter in hematopoietic cells interacting with ${\beta}$-globin gene LCR sequences in vitro. In this study, we have cloned four new non-polyA RNA transcripts being detected upon blockade of murine erythroleukemia (MEL) cell differentiation to erythroid maturation by methylation inhibitors and demonstrated that two of them share high structural homology with sequences of B1 element found within the B1-559 region. Although it is not clear yet whether and how these RNAs interfere with induction of erythroid maturation, these data provide evidence for the first time showing that methylation inhibitors can activate silent repetitive DNA sequences in MEL cells and may have implications in cancer chemotherapy using demethylating drugs as antineoplastic agents.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Fission Yeast-based Screening to Identify Putative HDAC Inhibitors Using a Telomeric Reporter Strain

  • Chung, Kyung-Sook;Ahn, Jiwon;Choi, Chung-Hae;Yim, Nam Hui;Kang, Chang-Mo;Kim, Chun-Ho;Lee, Kyeong;Park, Hee-Moon;Song, Kyung-Bin;Won, Misun
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.93-99
    • /
    • 2008
  • Transcriptional silencing is regulated by promoter methylation and histone modifications such as methylation and acetylation. We constructed a Schizosaccaromyces pombe reporter strain, KCT120a, to identify modifiers of transcriptional silencing, by inserting the $ura4^+$ gene into a heterochromatic telomere region. Two compounds inhibited the activity of histone deacetylases, induced acetylation of histone H3 and caused apoptotic cell death in HeLa cells. Expression of gelsolin and $p21^{waf1/cip1}$ also increased, as it does in response to HDAC inhibitors such as TSA. Therefore, these compounds appear to be potent inhibitors of HDACs, and hence potential anti-cancer drugs. Our observations suggest that a yeast cell-based assay system for transcriptional silencing may be useful for identifying histone deacetylase inhibitors and other agents affecting chromatin remodeling.

Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts

  • Sufaru, Irina-Georgeta;Beikircher, Gabriel;Weinhaeusel, Andreas;Gruber, Reinhard
    • Journal of Periodontal and Implant Science
    • /
    • 제47권2호
    • /
    • pp.66-76
    • /
    • 2017
  • Purpose: Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-${\beta}1$ (TGF-${\beta}1$). Methods: Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-${\beta}1$. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. Results: We found that 5-aza enhanced TGF-${\beta}1$-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-${\beta}$ type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-${\beta}$ signaling. 5-aza moderately increased the expression of TGF-${\beta}$ type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-${\beta}1$. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. Conclusions: These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-${\beta}$-induced IL11 expression in gingival fibroblasts.

Identification of a novel PARP4 gene promoter CpG locus associated with cisplatin chemoresistance

  • Hye Youn Sung;Jihye Han;Yun Ju Chae;Woong Ju;Jihee Lee Kang;Ae Kyung Park;Jung-Hyuck Ahn
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.347-352
    • /
    • 2023
  • The protein family of poly (ADP-ribose) polymerases (PARPs) is comprised of multifunctional nuclear enzymes. Several PARP inhibitors have been developed as new anticancer drugs to combat resistance to chemotherapy. Herein, we characterized PARP4 mRNA expression profiles in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. PARP4 mRNA expression was significantly upregulated in cisplatin-resistant ovarian cancer cell lines, and this upregulation was associated with the hypomethylation of specific cytosine-phosphate-guanine (CpG) sites (cg18582260 and cg17117459) on its promoter. Reduced PARP4 expression was restored by treating cisplatin-sensitive cell lines with a demethylation agent, implicating the epigenetic regulation of PARP4 expression by promoter methylation. Depletion of PARP4 expression in cisplatin-resistant cell lines reduced cisplatin chemoresistance and promoted cisplatin-induced DNA fragmentation. The differential mRNA expression and DNA methylation status at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) according to cisplatin responses, was further validated in primary ovarian tumor tissues. The results showed significantly increased PARP4 mRNA expressions and decreased DNA methylation levels at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) in cisplatin-resistant patients. Additionally, the DNA methylation status at cg18582260 CpG sites in ovarian tumor tissues showed fairly clear discrimination between cisplatin-resistant patients and cisplatin-sensitive patients, with high accuracy (area under the curve = 0.86, P = 0.003845). Our findings suggest that the DNA methylation status of PARP4 at the specific promoter site (cg18582260) may be a useful diagnostic biomarker for predicting the response to cisplatin in ovarian cancer patients.

Observation of Mitotic Chromosome behavior according to Different Treatment Methods of DNA Methylation Inhibitor

  • Seong-Wook Kang;Ji-Yoon Han;Seong-Woo Cho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.221-221
    • /
    • 2022
  • Chromosome breakage occurred by DNA methylation inhibitor. Zebularine is known as DNA methylation inhibitor and suitable for water solubility among different DNA methylation inhibitors as 5-Azacytidine and 5-aza-2'-deoxycytidine. We used zebularine as mutagen according to different methods by roots absorption and seed imbibition. After zebularine treatment, DNA methylation inhibitor, we observed mitotic chromosome behavior what is different according to two different treatment methods. First, seed imbibition treatment in 1,000 μM of zebularine solution for 72 hours in dark conditions. The second treatment to seedlings of Keumkang was also treated in 1,000 μM of zebularine solution for 72 hours after germination. Root and shoot showed different elongations in each treatment. Root absorption treatment(3.01±0.48, 2.00±0.26) showed the shortest elongation in root and shoot than control(8.16±0.61, 4.03±0.48) and seed imbibition treatment(4.33±0.80, 2.48±0.36). It can be explained root tip meristematic cell activity was damaged by DNA methylation inhibitor. Primary root tips were collected in DW for 24 hours at low temperature(0℃) and fixed in fixation solution for 3 days to chromosome observation in mitosis. Mitotic index, chromosome structure and chromosome aberration were observed by phase-contrast microscope. Mitotic index of the control(0.29) showed twice mitotic cells as the treated groups(imbibition 0.15, absorption 0.14). Observation of chromosomes showed some short chromosomes and loosen chromosomes affected by zebularine. It is considered because of zebularine damage DNA in mitosis. We observed "gap by chromosome breakage" in chromosomes that have loose parts between centromere and telomere. It seems demethylation of zebularine occurs chromosome breakage.

  • PDF

A synthesis of sugar-modified S-adenosyl-L-homocysteine(AdoHcy) analogues as inhibitors of AdoHcy hydrolase via the coupling sugar-modified adenosine analogues with L-homocysteine sodium salt.

  • Kim, Beom-Tae;Kim, Seung-Ki;Ryu, Jeong-Hyun;Hwang, Ki-Jun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.235.3-236
    • /
    • 2003
  • S-adenosyl-L-homocysteine(AdoHcy) is the product of all biological methylation in which S-adenosyl-L-methionine (AdoMet) is utilized as a methyl donor and is reversibly hydrolyzed to L-homocysteine and adenosine by AdoHcy hydrolase physiologically. Inhibition of this enzyme results in intracelluar accumulation of AdoHcy leading to a feedback inhibition of AdoMet-dependent methylation reactions which are essential for viral replication. (omitted)

  • PDF

Oligosaccharide-Linked Acyl Carrier Protein, a Novel Transmethylase Inhibitor, from Porcine Liver Inhibits Cell Growth

  • Seo, Dong-Wan;Kim, Yong-Kee;Cho, Eun-Jung;Han, Jeung-Whan;Lee, Hoi-Young;Hong, Sungyoul;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제25권4호
    • /
    • pp.463-468
    • /
    • 2002
  • We have previously reported on the identification of the endogenous transmethylation inhibitor oligosaccharide-linked acyl carrier protein (O-ACP), In this study, the role of the transmethylation reaction on cell cycle progression was evaluated using various transmethylase inhibitors, including O-ACP. O-ACP significantly inhibited the growth of various cancer cell lines, including NIH3T3, ras-transformed NIH3T3, MDA-MB-231, HT-1376, and AGS. In addition, exposure of ras-transformed NIH3T3 to O-ACP caused cell cycle arrest at the $G_0/G_1$ phase, which led to a decrease in cells at the S phase, as determined by flow cytometry. In contrast, transmethylase inhibitors did not affect the expression of $p21^{WAF1/Cip1}$, a well known inhibitor of cyclin dependent kinase, indicating that the cell cycle arrest by transmethylase inhibitors might be mediated by a $p21^{WAF1/Cip1}$-independent mechanism. Therefore, O-ACP, a novel transmethylase inhibitor, could be a useful tool for elucidating the novel role of methylation in cell proliferation and cell cycle progression.

Enhanced anticancer effects of a methylation inhibitor by inhibiting a novel DNMT1 target, CEP 131, in cervical cancer

  • Kim, Dong Hyun;Kim, Hye-Min;Huong, Pham Thi Thu;Han, Ho-Jin;Hwang, Joonsung;Cha-Molstad, Hyunjoo;Lee, Kyung Ho;Ryoo, In-Ja;Kim, Kyoon Eon;Huh, Yang Hoon;Ahn, Jong Seog;Kwon, Yong Tae;Soung, Nak-Kyun;Kim, Bo Yeon
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.342-347
    • /
    • 2019
  • Methylation is a primary epigenetic mechanism regulating gene expression. 5-aza-2'-deoxycytidine is an FDA-approved drug prescribed for treatment of cancer by inhibiting DNA-Methyl-Transferase 1 (DNMT1). Results of this study suggest that prolonged treatment with 5-aza-2'-deoxycytidine could induce centrosome abnormalities in cancer cells and that CEP131, a centrosome protein, is regulated by DNMT1. Interestingly, cancer cell growth was attenuated in vitro and in vivo by inhibiting the expression of Cep131. Finally, Cep131-deficient cells were more sensitive to treatment with DNMT1 inhibitors. These findings suggest that Cep131 is a potential novel anti-cancer target. Agents that can inhibit this protein may be useful alone or in combination with DNMT1 inhibitors to treat cancer.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.