Fission Yeast-based Screening to Identify Putative HDAC Inhibitors Using a Telomeric Reporter Strain

  • Chung, Kyung-Sook (Medical Genome Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Jiwon (Medical Genome Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Chung-Hae (Medical Genome Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yim, Nam Hui (Medical Genome Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kang, Chang-Mo (Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Chun-Ho (Laboratory of Cytogenetics and Tissue Regeneration, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Kyeong (Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Hee-Moon (College of Microbiology, Chungnam National University) ;
  • Song, Kyung-Bin (Department of Food Science and Technology, Chungnam National University) ;
  • Won, Misun (Medical Genome Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2008.01.08
  • Accepted : 2008.02.27
  • Published : 2008.07.31

Abstract

Transcriptional silencing is regulated by promoter methylation and histone modifications such as methylation and acetylation. We constructed a Schizosaccaromyces pombe reporter strain, KCT120a, to identify modifiers of transcriptional silencing, by inserting the $ura4^+$ gene into a heterochromatic telomere region. Two compounds inhibited the activity of histone deacetylases, induced acetylation of histone H3 and caused apoptotic cell death in HeLa cells. Expression of gelsolin and $p21^{waf1/cip1}$ also increased, as it does in response to HDAC inhibitors such as TSA. Therefore, these compounds appear to be potent inhibitors of HDACs, and hence potential anti-cancer drugs. Our observations suggest that a yeast cell-based assay system for transcriptional silencing may be useful for identifying histone deacetylase inhibitors and other agents affecting chromatin remodeling.

Keywords

Acknowledgement

Supported by : Korea Research Council of Fundamental Science and Technology

References

  1. Allshire, R.C., Javerzat, J.P., Redhead, N.J., and Cranston, G. (1994). Position effect variegation at fission yeast centromeres. Cell 76, 157-169 https://doi.org/10.1016/0092-8674(94)90180-5
  2. Allshire, R.C., Nimmo, E.R., Ekwall, K., Javerzat, J.P., and Cranston, G. (1995). Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9, 218-233 https://doi.org/10.1101/gad.9.2.218
  3. Anto, R.J., Sukumaran, K., Kuttan, G., Rao, M.N., Subbaraju, V., and Kuttan, R. (1995). Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Lett. 97, 33-37 https://doi.org/10.1016/0304-3835(95)03945-S
  4. Archer, S.Y., Meng, S., Shei, A., and Hodin, R.A. (1998). p21 (WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA 95, 6791- 6796
  5. Benetti, R., Garcia-Cao, M., and Blasco, M.A. (2007). Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat. Genet. 39, 243-250 https://doi.org/10.1038/ng1952
  6. Bi, G., and Jiang, G. (2006). The molecular mechanism of HDAC inhibitors in anticancer effects. Cell Mol. Immunol. 3, 285-290
  7. Boeck, P., Leal, P.C., Yunes, R.A., Filho, V.C., Lopez, S., Sortino, M., Escalante, A., Furlan, R.L., and Zacchino, S. (2005). Antifungal activity and studies on mode of action of novel xanthoxyline- derived chalcones. Arch. Pharm. 338, 87-95 https://doi.org/10.1002/ardp.200400929
  8. Boulares, A.H., Yakovlev, A.G., Ivanova, V., Stoica, B.A., Wang, G., Iyer, S., and Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem. 274, 22932-22940 https://doi.org/10.1074/jbc.274.33.22932
  9. Cabrera, M., Simoens, M., Falchi, G., Lavaggi, M.L., Piro, O.E., Castellano, E.E., Vidal, A., Azqueta, A., Monge, A., de Cerain, A. L.et al. (2007). Synthetic chalcones, flavanones, and flavones as antitumoral agents: biological evaluation and structure-activity relationships. Bioorg. Med. Chem. 15, 3356-3367 https://doi.org/10.1016/j.bmc.2007.03.031
  10. Chung, K.S., Won, M., Lee, S.B., Jang, Y.J., Hoe, K.L., Kim, D.U., Lee, J.W., Kim, K.W., and Yoo, H.S. (2001). Isolation of a novel gene from Schizosaccharomyces pombe: stm1+ encoding a seven-transmembrane loop protein that may couple with the heterotrimeric Galpha 2 protein, Gpa2. J. Biol. Chem. 276, 40190-40201 https://doi.org/10.1074/jbc.M100341200
  11. Chung, K.S., Won, M., Lee, J.J., Ahn, J., Hoe, K.L., Kim, D.U., Song, K.B., and Yoo, H.S. (2007). Yeast-based screening to identify modulators of G-protein signaling using uncontrolled cell division cycle by overexpression of Stm1. J. Biotechnol. 129, 547-554 https://doi.org/10.1016/j.jbiotec.2007.01.007
  12. Cianchi, F., Cortesini, C., Fantappie, O., Messerini, L., Schiavone, N., Vannacci, A., Nistri, S., Sardi, I., Baroni, G., Marzocca, C. et al. (2003). Inducible nitric oxide synthase expression in human colorectal cancer: correlation with tumor angiogenesis. Am. J. Pathol. 162, 793-801 https://doi.org/10.1016/S0002-9440(10)63876-X
  13. Cress, W.D., and Seto, E. (2000). Histone deacetylases, transcriptional control, and cancer. J. Cell. Physiol. 184, 1-16 https://doi.org/10.1002/(SICI)1097-4652(200007)184:1<1::AID-JCP1>3.0.CO;2-7
  14. Ekwall, K., Javerzat, J.P., Lorentz, A., Schmidt, H., Cranston, G., and Allshire, R. (1995). The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269, 1429- 1431 https://doi.org/10.1126/science.7660126
  15. Forsburg, S.L. (2001). The art and design of genetic screens: yeast. Nat. Rev. Genet. 2, 659-668 https://doi.org/10.1038/35088500
  16. Guo, J.J., Li, Q.L., and Huang A.L. (2006). Histone deacetylation is involved in activation of CXCL10 upon IFN$\gamma$ stimulation. Mol. Cells 22, 163-167
  17. Hall, I.M., Shankaranarayana, G.D., Noma, K., Ayoub, N., Cohen, A., and Grewal, S.I. (2002). Establishment and maintenance of a heterochromatin domain. Science 297, 2232-2237 https://doi.org/10.1126/science.1076466
  18. Han, J.W., Ahn, S.H., Park, S.H., Wang, S.Y., Bae, G.U., Seo, D.W., Kwon, H.K., Hong, S., Lee, H.Y., Lee, Y.W., et al. (2000). Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 60, 6068-6074
  19. Hess-Stumpp, H. (2005). Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur. J. Cell Biol. 84, 109-121 https://doi.org/10.1016/j.ejcb.2004.12.010
  20. Hoshikawa, Y., Kwon, H.J., Yoshida, M., Horinouchi, S., and Beppu, T. (1994). Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines. Exp. Cell Res. 214, 189-197 https://doi.org/10.1006/excr.1994.1248
  21. Huang, Y. (2002). Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res. 30, 1465-1482 https://doi.org/10.1093/nar/30.7.1465
  22. Johnstone, R.W. (2002). Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat. Rev. Drug Discov. 1, 287-299 https://doi.org/10.1038/nrd772
  23. Kanoh, J., Sadaie, M., Urano, T., and Ishikawa, F. (2005). Telomere binding protein Taz1 establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr. Biol. 15, 1808-1819 https://doi.org/10.1016/j.cub.2005.09.041
  24. Kouzarides, T. (1999). Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet Dev. 9, 40-48 https://doi.org/10.1016/S0959-437X(99)80006-9
  25. Lorentz, A., Ostermann, K., Fleck, O., and Schmidt, H. (1994). Switching gene swi6, involved in repression of silent mating-type loci in fission yeast, encodes a homologue of chromatinassociated proteins from Drosophila and mammals. Gene 143, 139-143 https://doi.org/10.1016/0378-1119(94)90619-X
  26. Marchion, D., and Munster, P. (2007). Development of histone deacetylase inhibitors for cancer treatment. Expert Rev. Anticancer Ther. 7, 583-598 https://doi.org/10.1586/14737140.7.4.583
  27. Marks, P., Rifkind, R.A., Richon, V.M., Breslow, R., Miller, T., and Kelly, W.K. (2001). Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194-202 https://doi.org/10.1038/35106079
  28. Marks, P.A., and Dokmanovic, M. (2005). Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin. Investig. Drugs 4, 1497-1511
  29. Minucci, S., and Pelicci, P.G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38-51 https://doi.org/10.1038/nrc1779
  30. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., et al. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 83, 757-766 https://doi.org/10.1093/jnci/83.11.757
  31. Moreno, S., Klar, A., and Nurse, P. (1991). Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795-823 https://doi.org/10.1016/0076-6879(91)94059-L
  32. Myzak, M.C., and Dashwood, R.H. (2006). Histone deacetylases as targets for dietary cancer preventive agents: lessons learned with butyrate, diallyl disulfide, and sulforaphane. Curr. Drug Targets 7, 443-452 https://doi.org/10.2174/138945006776359467
  33. Myzak, M.C., Ho, E., and Dashwood, R.H. (2006). Dietary agents as histone deacetylase inhibitors. Mol. Carcinog. 45, 443-446 https://doi.org/10.1002/mc.20224
  34. Nicholson, D.W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028-1042 https://doi.org/10.1038/sj.cdd.4400598
  35. Nimmo, E.R., Cranston, G., and Allshire, R.C. (1994). Telomereassociated chromosome breakage in fission yeast results in variegated expression of adjacent genes. EMBO J. 13, 3801- 3811
  36. Richards, E.J., and Elgin, S.C. (2002). Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489-500 https://doi.org/10.1016/S0092-8674(02)00644-X
  37. Richon, V.M., Sandhoff, T.W., Rifkind, R.A., and Marks, P.A. (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 97, 10014-10019
  38. Saito, A., Yamashita, T., Mariko, Y., Nosaka, Y., Tsuchiya, K., Ando, T., Suzuki, T., Tsuruo, T., and Nakanishi, O. (1999). A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA 96, 4592-4597
  39. Sherman, F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41 https://doi.org/10.1016/S0076-6879(02)50954-X
  40. Thomsen, L.L., Scott, J.M., Topley, P., Knowles, R.G., Keerie, A.J., and Frend, A.J. (1997). Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400 W, a novel inhibitor. Cancer Res. 57, 3300-3304
  41. Thon, G., and Verhein-Hansen, J. (2000). Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155, 551-568
  42. Vasudevan, A., Ji, Z., Frey, R.R., Wada, C.K., Steinman, D., Heyman, H.R., Guo, Y., Curtin, M.L., Guo, J., Li, J. et al. (2003). Heterocyclic ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett. 13, 3909-3913 https://doi.org/10.1016/j.bmcl.2003.09.007
  43. Woo, M., Hakem, R., Soengas, M.S., Duncan, G.S., Shahinian, A., Kagi, D., Hakem, A., McCurrach, M., Khoo, W., Kaufman, S.A.I= et al. (1998). Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806-819 https://doi.org/10.1101/gad.12.6.806
  44. Woo, H.J., Lee, S.J., Choi, B.T., Park, Y.M., and Choi, Y.H. (2007). Induction of apoptosis and inhibition of telomerase activity by trichostatin A, a histone deacetylase inhibitor, in human leukemic U937 cells. Exp. Mol. Pathol. 82, 77-84 https://doi.org/10.1016/j.yexmp.2006.02.004
  45. Yoshida, M., Horinouchi, S., and Beppu, T. (1995). Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17, 423- 430 https://doi.org/10.1002/bies.950170510