• Title/Summary/Keyword: HDAC inhibitor

Search Result 86, Processing Time 0.032 seconds

A New Histone Deacetylase Inhibitor, MHY219, Inhibits the Migration of Human Prostate Cancer Cells via HDAC1

  • De, Umasankar;Kundu, Soma;Patra, Nabanita;Ahn, Mee Young;Ahn, Ji Hae;Son, Ji Yeon;Yoon, Jung Hyun;Moon, Hyung Ryoung;Lee, Byung Mu;Kim, Hyung Sik
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.434-441
    • /
    • 2015
  • Histone deacetylase (HDAC) inhibitors are considered novel agents for cancer chemotherapy. We previously investigated MHY219, a new HDAC inhibitor, and its potent anticancer activity in human prostate cancer cells. In the present study, we evaluated MHY219 molecular mechanisms involved in the regulation of prostate cancer cell migration. Similar to suberanilohydroxamic acid (SAHA), MHY219 inhibited HDAC1 enzyme activity in a dose-dependent manner. MHY219 cytotoxicity was higher in LNCaP ($IC_{50}=0.67{\mu}M$) than in DU145 cells ($IC_{50}=1.10{\mu}M$) and PC3 cells ($IC_{50}=5.60{\mu}M$) after 48 h of treatment. MHY219 significantly inhibited the HDAC1 protein levels in LNCaP and DU145 cells at high concentrations. However, inhibitory effects of MHY219 on HDAC proteins levels varied based on the cell type. MHY219 significantly inhibited LNCaP and DU145 cells migration by down-regulation of matrix metalloprotease-1 (MMP-1) and MMP-2 and induction of tissue inhibitor of metalloproteinases-1 (TIMP-1). These results suggest that MHY219 may potentially be used as an anticancer agent to block cancer cell migration through the repression of MMP-1 and MMP-2, which is related to the reduction of HDAC1.

MicroRNA-22 negatively regulates LPS-induced inflammatory responses by targeting HDAC6 in macrophages

  • Youn, Gi Soo;Park, Jong Kook;Lee, Chae Yeon;Jang, Jae Hee;Yun, Sang Ho;Kwon, Hyeok Yil;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.223-228
    • /
    • 2020
  • Dysregulation of histone deacetylase 6 (HDAC6) can lead to the pathologic states and result in the development of various diseases including cancers and inflammatory diseases. The objective of this study was to elucidate the regulatory role of microRNA-22 (miR-22) in HDAC6-mediated expression of pro-inflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. LPS stimulation induced HDAC6 expression, but suppressed miR-22 expression in macrophages, suggesting possible correlation between HDAC6 and miR-22. Luciferase reporter assays revealed that 3'UTR of HDAC6 was a bona fide target site of miR-22. Transfection of miR-22 mimic significantly inhibited LPS-induced HDAC6 expression, while miR-22 inhibitor further increased LPS-induced HDAC6 expression. LPS-induced activation of NF-κB and AP-1 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. LPS-induced expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. Taken together, these data provide evidence that miR-22 can downregulate LPS-induced expression of pro-inflammatory cytokines via suppression of NF-κB and AP-1 axis by targeting HDAC6 in macrophages.

Over-Expression of Beclin-1 Facilitates Acquired Resistance to Histone Deacetylase Inhibitor-Induced Apoptosis

  • Wang, Shi-Miao;Li, Xiao-Hui;Xiu, Zhi-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7913-7917
    • /
    • 2014
  • Apoptotic cell death plays a predominant role in histone deacetylase (HDAC) inhibitor-induced cytotoxicity. Nuclear morphological changes and activation of apoptotic executors are involved in CTS203-induced cell death. However, emerging issues of HDAC inhibitor-resistance have been observed in patients. Herein, MCF-7 cells were continuously exposed to CTS203 until the derived cells could proliferate normally in its presence. The newly obtained CTS203-resistant cells were nominated as MCF-7/203R. Compared to MCF-7 original cells, the MCF-7/203R cells were less sensitive to CTS203-induced apoptosis, with a minimal 6-fold higher $IC_{50}$ value. In contrast, the expression of Beclin-1 was dramatically up-regulated, positively correlated to the acquisition of CTS203-resistance. Our results revealed the participation of autophagy in acquired HDAC inhibitor-resistance and further identified Beclin-1 as a promising target for anti-drug resistance.

MeBib Suppressed Methamphetamine Self-Administration Response via Inhibition of BDNF/ERK/CREB Signal Pathway in the Hippocampus

  • Kim, Buyun;Jha, Sonam;Seo, Ji Hae;Jeong, Chul-Ho;Lee, Sooyeun;Lee, Sangkil;Seo, Young Ho;Park, Byoungduck
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.519-526
    • /
    • 2020
  • Methamphetamine (MA) is one of the most commonly abused drugs in the world by illegal drug users. Addiction to MA is a serious public health problem and effective therapies do not exist to date. It has also been reported that behavior induced by psychostimulants such as MA is related to histone deacetylase (HDAC). MeBib is an HDAC6 inhibitor derived from a benzimidazole scaffold. Many benzimidazole-containing compounds exhibit a wide range of pharmacological activity. In this study, we investigated whether HDAC6 inhibitor MeBib modulates the behavioral response in MA self-administered rats. Our results demonstrated that the number of active lever presses in MA self-administered rats was reduced by pretreatment with MeBib. In the hippocampus of rats, we also found MA administration promotes GluN2B, an NMDA receptor subunit, expression, which results in sequential activation of ERK/CREB/BDNF pathway, however, MeBib abrogated it. Collectively, we suggest that MeBib prevents the MA seeking response induced by MA administration and therefore, represents a potent candidate as an MA addiction inhibitor.

Differentiation and upregulation of heat shock protein 70 induced by a subset of histone deacetylase inhibitors in mouse and human embryonic stem cells

  • Park, Jeong-A;Kim, Young-Eun;Seok, Hyun-Jeong;Park, Woo-Youn;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.44 no.3
    • /
    • pp.176-181
    • /
    • 2011
  • Inhibiting histone deacetylase (HDAC) activity modulates the epigenetic status of cells, resulting in an alteration of gene expression and cellular function. Here, we investigated the effects of HDAC inhibitors on mouse embryonic stem (ES) cells. The HDAC inhibitors trichostatin A, suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid induced early differentiation of mouse ES cells and triggered induction of heat-shock protein (HSP)70. In contrast, class III HDAC inhibitors failed to induce differentiation or HSP70 expression. Transcriptional upregulation of HSP70 was confirmed by mRNA expression analysis, an inhibitor study, and chromatin immunoprecipitation. HSP70 induction was dependent on the SAPK/JNK, p38, and PI3K/Akt pathways. Differentiation and induction of HSP70 by a subset of HDAC inhibitors was also examined in human ES cells, which suggests that the phenomenon generally occurs in ES cells. A better understanding of the effects of HDAC inhibitors may give more insight into their application in stem cell biology.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.

HDAC3 acts as a negative regulator of angiogenesis

  • Park, Deokbum;Park, Hyunmi;Kim, Youngmi;Kim, Hyuna;Jeoung, Dooil
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.227-232
    • /
    • 2014
  • Histone deacetylase-3 (HDAC3) is involved in cellular proliferation, apoptosis and transcriptional repression. However, the role of HDAC3 in angiogenesis remains unknown. HDAC3 negatively regulated the expression of angiogenic factors, such as VEGF and plasminogen activator inhibitor-1 (PAI-1). HDAC3 showed binding to promoter sequences of PAI-1. HDAC3 activity was necessary for the expression regulation of PAI-1 by HDAC3. VEGF decreased the expression of HDAC3, and the down-regulation of HDAC3 enhanced endothelial cell tube formation. HDAC3 negatively regulated tumor-induced angiogenic potential. We show the novel role of HDAC3 as a negative regulator of angiogenesis.

Histone deacetylases inhibitor and RAD51 recombinase increase transcription activator-like effector nucleases-mediated homologous recombination on the bovine β-casein gene locus

  • Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1023-1033
    • /
    • 2020
  • Objective: The efficiency of the knock-in process is very important to successful gene editing in domestic animals. Recently, it was reported that transient loosening of the nucleosomal folding of transcriptionally inactive chromatin might have the potential to enhance homologous recombination efficiency. The objective of this study was to determine whether histone deacetylases (HDAC) inhibitor and RAD51 recombinase (RAD51) expression were associated with increased knock-in efficiency on the β-casein (bCSN2) gene locus in mammary alveolar-large T antigen (MAC-T) cells using the transcription activator-like effector nucleases (TALEN) system. Methods: MAC-T cells were treated with HDAC inhibitors, valproic acid, trichostatin A, or sodium butyrate for 24 h, then transfected with a knock-in vector, RAD51 expression vector and TALEN to target the bCSN2 gene. After 3 days of transfection, the knock-in efficiency was confirmed by polymerase chain reaction and DNA sequencing of the target site. Results: The level of HDAC 2 protein in MAC-T cells was decreased by treatment with HDAC inhibitors. The knock-in efficiency in MAC-T cells treated with HDAC inhibitors was higher than in cells not treated with inhibitors. However, the length of the homologous arm of the knock-in vector made no difference in the knock-in efficiency. Furthermore, DNA sequencing confirmed that the precision of the knock-in was more efficient in MAC-T cells treated with sodium butyrate. Conclusion: These results indicate that chromatin modification by HDAC inhibition and RAD51 expression enhanced the homologous recombination efficiency on the bCSN2 gene locus in MAC-T cells.

Anti-invasive activity of histone deacetylase inhibitors via the induction of Egr-1 and the modulation of tight junction-related proteins in human hepatocarcinoma cells

  • Kim, Sung-Ok;Choi, Byung-Tae;Choi, Il-Whan;Cheong, Jae-Hun;Kim, Gi-Young;Kwon, Taeg-Kyu;Kim, Nam-Deuk;Choi, Yung-Hyun
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.655-660
    • /
    • 2009
  • The potential anti-metastasis and anti-invasion activities of early growth response gene-1 (Egr-1) and claudin-3, a tight junction (TJ)-related protein, were evaluated using histone deacetylase (HDAC) inhibitors in human hepatocarcinoma cells. The results of wound healing and Transwell assays showed that HDAC inhibitors such as trichostatin A and sodium butyrate inhibited cell migration and invasion. HDAC inhibitors markedly induced Egr-1 expression during the early period, after which expression levels decreased. In addition, the down-regulation of snail and type 1 insulin-like growth factor receptor (IGF-1R) in HDAC inhibitor- treated cells induced the upregulation of thrombospondin-1 (TSP-1), E-cadherin and claudin-3. Cells transfected with Egr-1 and claudin-3 siRNA displayed significant blockage of HDAC inhibitor-induced anti-invasive activity. Collectively, these findings indicate that the up-regulation of Egr-1 and claudin-3 are crucial steps in HDAC inhibitor-induced anti-metastasis and anti-invasion.