• Title/Summary/Keyword: Methyl butanoate

Search Result 17, Processing Time 0.017 seconds

Effects of Post-Harvest Storage Period on the Flavor Components of Korean Kiwifruit(Actinidia deliciosa Planch.) (수확 후 저장기간이 한국산 양다래의 향기성분에 미치는 영향)

  • Kim, Jung-Min;Ko, Young-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.623-625
    • /
    • 1997
  • This study was carried out to investigate the effect of storage period on flavor components of Korean kiwifruits (Actinidia deliciosa Planch.) stored at $20^{\circ}C$. The major volatile components of Korean kiwifruits analyzed by GC and GC-MS were pentanal, methyl butanoate, ethyl pentanoate, heptanone, (E)-2-hexenal, ethyl hexanoate, 1-hexanol, cyclohexanol, butyl hexanoate, linalool oxide, linalool, butyl heptanoate, methyl benzoate, ethyl benzoate. Among them, (E)-2-hexenal was the major component in premature fruit but on further ripening ethyl butanoate began to dominate the component profile.

  • PDF

Chemical Mechanism Reduction and Validation of Methyl Butanoate by Automatic Reduction Procedure (Methyl Butanoate의 상세 화학 반응 메커니즘 자동 축소화를 통한 기초 반응 메커니즘의 생성 및 검증)

  • Lee, Youngjae;Huh, Kang Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • In this study, skeletal mechanisms are produced by directed relation graph with specified threshold value and sensitivity analysis based on species database from the directed relation graph. Skeletal mechanism is optimized through the elimination of unimportant reaction steps by computational singular perturbation importance index. Reduction is performed for the detailed mechanism of methyl butanoate consisting of 264 species and 1219 elementary reactions. Validation shows acceptable agreement for auto-ignition delays in wide parametric ranges of pressure, temperature and equivalence ratio. Methyl butanoate has been proposed as a simple biodiesel surrogate although the alkyl chain consists of four carbon atoms. The resulting surrogate mechanism for n-heptane and MB consists of 76 species and 226 reaction steps including those for NOx.

Studies on Volatile Flavor Compounds of Soy Sauce Residue (간장박의 휘발성 향기성분에 관한 연구)

  • Cha, Yong-Jun;Wang, Wenfeng;Cha, Ha-Ram
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1755-1761
    • /
    • 2016
  • Volatile flavor compounds in soy sauce residue (SSR) and acid hydrolysate of SSR (AHSSR) were analyzed by solid phase micro extraction (SPME)/gas chromatography (GC)/mass spectrometry (MSD) methods. A total of 79 compounds were detected in samples (66 SSR and 60 AHSSR). Quantitatively, alcohols (433.37 ng/g), aldehydes (273.01 ng/g), esters (236.80 ng/g), and aromatic hydrocarbons (180.66 ng/g) were dominant in the volatiles of SSR, whereas furans (249.27 ng/g) were only dominant in AHSSR (P<0.05). Among these, four esters, 3-methylbutyl acetate (banana/pear-like), ethyl 3-methyl butanoate (fruity), ethylbenzene acetate (wine-like), and ethyl 3-methyl butanoate (apple-like), three alcohols, 3-methyl-1-butanol (fruity/whisky-like), 2-phenylethanol (floral/sweet), and 1-octen-3-ol (mushroom-like), four aldehydes, (E)-2-phenyl-2-butenal (chocolate-like), benzaldehyde (almond-like), 3-methylbutanal (malty), and 2-phenylacetaldehyde (floral), four aromatic hydrocarbons, 4-ethyl-2-methoxyphenol (smoky/soy sauce-like), 4-ethylphenol (medicine-like), 4-vinyl-2-methoxyphenol (woody), and phenol (woody), and two furans, furfural (almond-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel-like), were major compounds in SSR, whereas seven compounds, including furfural, 5-methylfurfural (almond-like), 3-methyl-1-butanol, 2-phenylethanol, 4-ethyl-2-methoxyphenol, 3-methylbutanal, and benzaldehyde were major compounds in AHSSR.

Comparative Studies on the Aroma and Taste Components of Korean and Imported Kiwifruits (한국산 및 수입 양다래의 향미성분의 비교)

  • Kim, Jung-Min;Ko, Young-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.626-629
    • /
    • 1997
  • This study was carried out to investigate the differences of aroma and taste components among three kinds of kiwifruits from Korea, New Zealand and California. The moisture contents, pH, titratable acidity, organic acid, free sugar and volatile aromas were compared. The free sugar and organic acid were measured simultaneously by GC. Volatile aromas were extracted by simultaneous distillation and extraction and analyzed by GC and GC/MS. The moisture contents, pH and titratable acidity showed almost no differences among the three samples. Among the organic acids, malic acid contents were different. Citric acid contents were similar level. Quinic acid in Korean kiwifruits was extremely low compared to other samples. The total sugar contents were similar in three kiwifruit groups. The composition of major flavor components such as ethyl butanoate, hexanal, propyl butanoate, ethyl pentanoate, 2-hexenal, hexanol, hexanal, linalool oxide, methyl benzoate were different among Korean, New Zealand and California Kiwifruits.

  • PDF

Characteristics of Volatile Flavor Compounds of Fuji Apples by Different Extraction Methods (추출방법에 따른 후지사과의 휘발성 향기성분 특성)

  • Seo, Hye-Young;Lee, Hae-Chang;Kim, Yun-Sook;Choi, In-Wook;Park, Yong-Kon;Shin, Dong-Bin;Kim, Kyong-Su;Choi, Hee-Don
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.12
    • /
    • pp.1615-1621
    • /
    • 2008
  • The characteristics of volatile flavor compounds of Fuji apples were compared by different extraction methods for information leading to a natural fragrance development. The volatile flavor components of Fuji apples were extracted using simultaneous steam distillation and extraction (SDE), solvent extraction (SE), and solid-phase microextraction (SPME) methods and then analyzed by gas chromatograph-mass spectrometer. A total of 66, 32 and 54 components were identified in SDE, SE and SPME extracts, respectively. (E,E)-$\alpha$-Farnesene, hexanol, butanol, 2-methyl butanol, hexyl hexanoate, hexyl 2-methyl butanoate, hexyl butanoate, and butyl hexanoate were the major flavor components in the extracts by different methods, but the composition of volatiles in the extracts were different. Alcohols and hydrocarbons were the major functional groups in SDE and SE extract whereas esters and hydrocarbons were the major functional groups in SPME extracts. SPME was the most suitable method for analysis of fresh volatiles from Fuji apples.

Aroma Characteristics of Applemint (Mentha rotundifolia(L.) Huds) with Different Extraction Methods (추출방법에 따른 애플민트의 향기특성)

  • Min, Young-Kyoo;Yoon, Hyang-Sik;Kim, Ji-Yeoun;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1465-1470
    • /
    • 1999
  • Aroma was extracted from Applemint(Mentha rotundifolia(L.) Huds) with SDE(simultaneous distillation and extraction), SFE(supercritical fluid extraction) and headspace method and the compounds of aroma were tentatively identified with GC-MS. The functionality of aroma compounds were determined with GC-olfactometry. Total 67 compounds were identified. Among them, 39 compounds were determined from SDE, 42 from SFE and 16 from headspace extract. Many terpene compounds were extracted with SDE and headspace methods but hydrocarbones with SFE. The major constituents of aroma obtained from SDE and SFE, were piperitenone oxide, germacrene-D and trans sabinene hydrate, but those from headspace method were 3-octanol, 1,8-cineol, camphene and benzeneacetaldehyde. Results of sniffing test, determining characteristics and strength of aroma showed that the major constituents of SDE extract were refreshing sweet and apple-like(ethyl-2-methyl butanoate), sweet and fruity-like$({\alpha}-thujene)$, fresh mushroom-like(1-octen-3-ol, 3-octanol), and bitter herb-like$({\delta}-cadidene)$. Major constituents of aroma extracts obtained from headspace method were alcoholic, refreshing sweet and apple-like(ethyl 2-methyl butanoate), unpleasant chemical, and bitter herb and grassy-like(camphene).

  • PDF

Chracteristics of volatile flavor compounds in improved kochujang prepared with soybean koji during fermentation (콩고오지를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo;Park, Sung-Oh
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1144-1150
    • /
    • 1997
  • Volatile flavor components of soybean koji kochujang made from a glutinuous rice by improved method were analyzed by using a purge and trap method during fermentation, and identified with GC-MSD. Fifty-six volatile flavor components including 16 alcohols, 15 esters, 7 acids, 4 aldehydes, 5 alkanes, 3 ketones, 1 benzene, 1 alkene, 2 phenol and 2 others were found in improved kochujang. The number of volatile flavor components detected immediately after making kochujang were 32 and increased to 46 components after 30 day of fermentation. The most number 55 of volatile flavor components were found after 90 day of fermentation. Thirty-one kinds of volatile flavor components were commonly found through the fermentation period 9 alcohols such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 8 esters such as methyl acetate, ethyl acetate, 2-methylpropyl acetate, 3 aldehydes such as butanal, acetaldehyde, furfural and 11 othesrs. Although the various types of peak areas (%) of volatile flavor components were shown in kochujang during the fermentation days, ethanol. ethyl acetate, ethyl butanoate, 2-methylpropyl acetate, 2-methyl-1-propanol and 3-methyl-1-butanol were mainly detected during fermentation. Those might be the major volatile flavor components in kochujang made by improved method. Peak area of ethanol was the highest one among the volatile flavor components at immediately after mashing and 90 day while ethyl acetate showed the highest Peak area after $30{\sim}60$ day of fermentation and 3-methyl-1-butanol showed the highest peak area after $120{\sim}150$ day of fermentation.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Aspergillus oryzae Nuruks. (Aspergillus oryzae 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Han, Eun-Hey
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.366-372
    • /
    • 2001
  • Volatile flavor components in the mash of Takjus prepared by using Aspergillus oryzae nuruk were identified by using Gas Chromatography and Gas Chromatography-Mass Spectrometry. Twenty-four esters, 21 alcohols, 10 acids, 9 aldehydes and 4 others were found in the mash of Takju. Thirty six components including 13 esters and 12 alcohols were detected in the beginning of fermentation. Twenty nine components were more detected after second day of fermentation and 68 components were detected after 12 days of fermentation. Thirty five flavor components including 12 alcohols such as ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and benzeneethanol, 13 esters such as ethyl acetate, ethyl caprylate, ethyl butyrate and isoamyl acetate, 4 aldehydes and 6 acids were usually detected in the fermentation process. Ethanol was predominantly found in the range of $79.86{\sim}89.54%$ as a major component by using relative peak area. 3-Methyl-1-butanol, ethyl caprylate and benzeneethanol were some of the major volatile components through the fermentation respectively. Peak area of 2-methyl-1-propanol, 1-hexanol, 1-dodecanol, ethyl acetate, monoethyl butanoate, acetic acid and isobutylaldehyde among the same group were higher than other components depending upon fermentation time.

  • PDF

Volatile Flavor Components in Mash of Takju prepared by using Aspergillus kawachii Nuruks (Aspergillus kawachii 누룩으로 담금한 탁주 술덧의 발효 과정 중 휘발성 향기성분)

  • Lee, Taik-Soo;Choi, Jin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.944-950
    • /
    • 2005
  • Volatile flavor components of Takjus mash prepared using Aspergillus kawachii nuruk were identified by GC and GC/MS. Twenty-two esters, 20 alcohols, 10 acids, 8 aldehydes, and 3 others were found in Takju mash. Thirty two components including 13 esters and 13 alcohols were detected at beginning of fermentation. Thirteen more components were detected after second day of fermentation, and 63 additional components after 12 days of fermentation. Twenty nine flavor components including 12 alcohols such as ethanol, 3-methyl-1-butanol, 2-methyl-1-propanol, and benzeneethanol, 12 esters such as ethyl acetate, ethyl caprylate, and ethyl butyrate 3 aldehydes, and 2 acids were detected during fermentation. Major volatile components detected during fermentation included 3-methyl-1-butanol, ethyl caprylate, and benzeneethanol. Peak areas of 2-methyl-1-propanol, 1-hexanol, 2, 3-butanediol (D.L), 1-dodecanol, 2-phenylethyl acetate, ethyl acetate, and monoethyl butanoate were higher than those of other components depending upon fermentation period.

Volatile Flavor Components in the Mashes of Takju Prepared Using Different Yeasts (효모종류를 달리한 탁주 술덧의 휘발성 향기성분)

  • Lee, Heung-Sook;Lee, Taik-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.593-599
    • /
    • 2007
  • In this study, we examined the volatile flavor components in the mashes of takju prepared using different yeasts such as Saccharomyces coreanus, S. ellipsoideus, S. carlsbergensis, S. cerevisiae (Baker's yeast), and S, rouxii by GC and GC-MS. Fourteen alcohols, 13 esters, 5 acids, 3 aldehydes, 7 amines, and 2 other compounds were identified in the mash after 6 days of fermentation. On day 6, the takju fermented by S. coreanus had the greatest variety of volatile flavor components. Fifteen flavor components, including ethanol, isobutyl alcohol, isoamyl alcohol, methyl pentanol, 1,3-butanediol, 3-methylthio-1-propanol, benzeneethanol, ethyl lactate, acetic acid, acetaldehyde, and 1,3-cyclohexane diamine, were typically detected in all the treatments. The relative peak areas of the volatile components were as follows: alcohols (96.758-99.387%), esters (0.081-0.968%), acids (0.040-0.640%), aldehydes (0.266-0.959%), and amines (0.011-0.047%). In particular, 1-propanol, isobutyl alcohol, 3-methyl-1-butanol, 2,3-butanediol, trimethyl benzylalcohol, heptene-2,4-diol, ethyl lactate, diethyl succinate, ethyl nonanoate, methyl hexadecanoate, linoleic acid, hexadecanoic acid, and acetaldehyde were hish in the takju made by S. coreanus. Also, ethyl stearate was high in the takju made by S. carlsbergensis, and hexanoic acid was high in the takju made by S. cerevisiae. Finally, methyl pentanol, 1,3-butanediol, 3-methylthio-1-propanol, benzene ethanol, ethyl octadecanoate, acetic acid, pentanal, and 1,3-cyclohexane diamine were high in the takju made by S. rouxii.