• Title/Summary/Keyword: Methyl C(2)

Search Result 1,766, Processing Time 0.032 seconds

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Characteristics of gaeryangmerou wine deacidified by a malic acid-degrading yeast (사과산 분해 효모에 의한 개량머루주의 감산 특성)

  • Kim, Chan-Woo;Kang, Ji-Eun;Jeong, Seok-Tae;Yeo, Soo-Hwan;Kim, Young-Hoi;Kim, Myung-Kon;Park, Heui-Dong;Choi, Han-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.605-609
    • /
    • 2017
  • The effect of malic acid-degrading yeast on the quality of Gaeryangmerou (Vitis spp.) wine obtained from grapes commonly used for making wine in Korea was investigated. Alcoholic fermentation was carried out at $25^{\circ}C$, for 14 days. A malic acid-degrading yeast was used as the experimental sample and a commercial yeast, Fermivin, was used as a control. The fermentation process for the experimental yeast lasted 2-3 days longer than that of Fermivin. The pH and the volatile acid content of the wine were 3.94 and 244.20 mg/L, respectively. The total acid content was 0.86% for the experimental group and 0.94% for the control group. The contents of malic acid and succinic acid in the experimental group were significantly lower than that of the control group (245.61, 50.18 mg% for experimental group versus 302.44, 68.39 mg% for control group, respectively). In contrast, lactic acid content was slightly higher in the experimental group. As expected, the main volatile flavor compounds of Gaeryangmerou wine varied with the yeast used for fermentation and were determined to be isoamyl alcohol, ${\beta}$-phenethyl alcohol, 2-methyl-1-propanol, and diacetyl for the experimental wine.

Isolation and Identification of a Photosensitizer from Pueraria thunbergiana Leaves that Induces Apoptosis in SK-HEP-1 Cells (P. thunbergiana 잎으로부터 SK-HEP-1세포에 대한 apoptosis를 유도하는 광과민성물질의 분리 및 구조동정)

  • Lee, Jun Young;Kim, Mi Kyeong;Ha, Jun Young;Kim, Yong Gyun;Hong, Chang Oh;Kim, So Young;Kim, Chung-Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.242-251
    • /
    • 2014
  • The objective of this study was to isolate a photosensitizer from Pueraria thunbergiana leaves that induces apoptosis in SK-HEP-1 cells. Column chromatography and thin layer chromatography were used to isolate active compounds from extracts of P. thunbergiana leaves. The structures of the isolated compounds were determined by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. A substance, named M4-3, was purified from the leaves of P. thunbergiana using various chromatography methods, and the absorbance of the substance was measured. The absorbance was highest at 410 nm, suggesting that the M4-3 substance was a different compound from chlorophyll a and b, which absorb at 410, 502, 533, and 607 nm. Further analyses revealed that the M4-3 compound was a $13^2$-hydoxy pheophorbide, a methyl ester with a molecular weight of 662. M4-3 was identified as a derivative compound of pheophorbide, with a structure that magnesium comes away from the porphyrin ring. The results of the analysis of the cytotoxicity of the M4-3 substance against the SK-HEP-1 cells revealed that it inhibited rates of cell growth by 40% and 80% at a concentration of 0.04 ${\mu}M$ and 0.08 ${\mu}M$, respectively. The M4-3 compound was found to be a photosensitizer for cytotoxicity because it was appeared only in light condition as examining activity in different irradiation conditions (light condition and nonlight condition) under the same concentration. Analysis of morphological changes in the cells following cell death induced by exposure to the M4-3 substance reveled representative phenomena of apoptosis (nuclear condensation, vesicle formation, and fragmentation of DNA). The induction of apoptosis was attributed to the compound's photodynamic activity.

Preventive Characteristics of Garlic Extracts Using in vitro Model System on Alzheimer's Disease (In vitro model system을 활용한 마늘 추출물의 치매예방 특성)

  • Choi, Gwi-Nam;Kim, Ji-Hye;Kwak, Ji-Hyun;Jeong, Chang-Ho;Jeong, Hee-Rok;Shin, Jung-Hye;Kang, Min-Jung;Sung, Nak-Ju;Heo, Ho-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.45-55
    • /
    • 2010
  • In this study, the acetylcholinesterase (AChE) inhibition and neuronal cell protective effects of water, 100% methanol and dichlromethane extracts from garlic were investigated. We found that dichloromethane extract of garlic resulted in a dose-dependent manner on AChE inhibition ($IC_{50}$: $36.1{\mu}g/mL$). In cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), cell viabilities of water, 100% methanol and dichlromethane extracts were lower (almost under 40%) than amyloid ${\beta}$ protein ($A{\beta}$)-induced neurotoxicity. Because $A{\beta}$ is also known to increase neuronal cell membrane breakdown, neuronal apoptosis was further confirmed by lactate dehydrogenase (LDH) and neutral red uptake (NRU) assay. Water extract presented relative protection against $A{\beta}$-induced membrane damage in LDH assay. However all garlic extracts showed significant problem with decrease of cell viability in NRU assay, especially at dichloromethan extract. To determine active compounds in column fractions (98:2 fraction) from dichloromethane extract which showed significant AChE inhibitory effect, we performed HPLC and LC-MS analysis. It was supposed that garlic may contain allyl methyl disulfide, diallyl monosulfide, and diallyl disulfide as active compounds.

Gene Expression Profiling of Genotoxicity Induced by MNNG in TK6 Cell

  • Suh, Soo-Kyung;Kim, Tae-Gyun;Kim, Hyun-Ju;Koo, Ye-Mo;Lee, Woo-Sun;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. In this study, we investigated to examine gene expression profiles and genotoxic response in TK6 cells treated with DNA damaging agents MNNG (N-methyl-N'-nitrosoguanidine) and hydrogen peroxide $(H_2O_2)$. We extracted total RNA in three independent experiments and hybridized cRNA probes with oligo DNA chip (Applied Biosystems Human Genome Survey Microarray). We analyzed raw signal data with R program and AVADIS software and identified a number of deregulated genes with more than 1.5 log-scale fold change and statistical significancy. We indentified 14 genes including G protein alpha 12 showing deregulation by MNNG. The deregulated genes by MNNG represent the biological pathway regarding MAP kinase signaling pathway. Hydrogen peroxide altered 188 genes including sulfiredoxins. These results show that MNNG and $H_2O_2$ have both uniquely regulated genes that provide the potential to serve as biomarkers of exposure to DNA damaging agents.

Chemical Characteristics and Efficacy of Combined Pesticide Granules Formulated by Different Ways (제제방법별(製劑方法別) 혼합입제(混合粒劑) 농약(農藥)의 특성(特性)과 약효(藥效))

  • Oh, B.Y.;Park, Y.S.;Shim, J.W.;Kang, C.S.;Lee, H.R.
    • Applied Biological Chemistry
    • /
    • v.29 no.1
    • /
    • pp.90-95
    • /
    • 1986
  • A comparative study of chemical characteristics, efficacy and relative merits of extruded and coated granules, containing fungicide and insecticide, was conducted under laboratory and field conditions. Probenzole (3-allyloxy-1,2-benzisothiazole 1,1-dioxide) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methyl carbamate) were chosen as toxicants for rice blast(Pyricularia oryzae) and brown planthopper (Nilaparvata lugens) control, respectively. Stability of active ingredients in coated granule was superior to the extruded one under accelerated temperature. Active ingredient dissolution of coated one into distilled water showed slow release pattern. Pesticide residues in rice (Oryzae sativa, Chucheongbyeo) shoot applied with extruded one at the dosage of 3kg/10a retained higher levels than those with coated one on two days after application, while the residue levels were a reversed tendency on eight days after application. Efficacy on rice blast exhibited minute differences between the granules, on the other hand efficacy on brown planthopper by coated one was of higher rank than that by extruded one. Production cost of the combined pesticide granule by coating method could be cut down by 6% as compared to extrusion method.

  • PDF

Molecular Cloning and Characterization of the Yew Gene Encoding Squalene Synthase from Taxus cuspidata

  • Huang, Zhuoshi;Jiang, Keji;Pi, Yan;Hou, Rong;Liao, Zhihua;Cao, Ying;Han, Xu;Wang, Qian;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.625-635
    • /
    • 2007
  • The enzyme squalene synthase (EC 2.5.1.21) catalyzes a reductive dimerization of two farnesyl diphosphate (FPP) molecules into squalene, a key precursor for the sterol and triterpene biosynthesis. A full-length cDNA encoding squalene synthase (designated as TcSqS) was isolated from Taxus cuspidata, a kind of important medicinal plants producing potent anti-cancer drug, taxol. The full-length cDNA of TcSqS was 1765 bp and contained a 1230 bp open reading frame (ORF) encoding a polypeptide of 409 amino acids. Bioinformatic analysis revealed that the deduced TcSqS protein had high similarity with other plant squalene synthases and a predicted crystal structure similar to other class I isoprenoid biosynthetic enzymes. Southern blot analysis revealed that there was one copy of TcSqS gene in the genome of T. cuspidata. Semi-quantitative RT-PCR analysis and northern blotting analysis showed that TcSqS expressed constitutively in all tested tissues, with the highest expression in roots. The promoter region of TcSqS was also isolated by genomic walking and analysis showed that several cis-acting elements were present in the promoter region. The results of treatment experiments by different signaling components including methyl-jasmonate, salicylic acid and gibberellin revealed that the TcSqS expression level of treated cells had a prominent diversity to that of control, which was consistent with the prediction results of TcSqS promoter region in the PlantCARE database.

Ecological Characteristics of Bacteriophages Infecting Xanthomonas oryzae pv. oryzae and Their Use as Biocontrol Agents (벼 흰잎마름병균 파지의 생태학적 특성 및 이를 이용한 생물방제)

  • Yu, Sang-Mi;Noh, Tae-Hwan;Kim, Dong-Min;Jeon, Tae-Woog;Lee, Young-Kee;Lee, Se-Won;You, Oh-Jong;Kim, Byung-Seok;Lee, Yong-Hoon
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.90-94
    • /
    • 2011
  • Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice growing regions of the world. There are no effective ways of protecting rice from the disease. In this study, the bacteriophage (phage) mixtures infecting Xoo were investigated as biological control agent on BLB. The effects of pH, heat and ultraviolet on the stability of phages were investigated to check and increase the possibility of practical use in the field. Phages were rather stable between pH 5 and pH 10. The infectivity dropped sharply when the phages were incubated at $50^{\circ}C$ and more than 90% of the phages were inactivated after two minutes of ultraviolet treatment. The phages were stable for 7 days at the rice plant leaves, and the phages survived 10 times more than other treatments when mixed with skim milk. Although the skim milk increased the stability of the phages, the control efficacy was not effective. However, the phage mixtures reduced the occurrence of BLB when they were treated with Tecloftalam WP or Acibenzolar-S-methyl simultaneously. The results indicated that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.

Optimization of Esterification of Jatropha Oil by Amberlyst-15 and Biodiesel Production (Amberlyst-15를 이용한 자트로파 오일의 에스테르화 반응 최적화 및 바이오디젤 생산)

  • Choi, Jong-Doo;Kim, Deog-Keun;Park, Ji-Yeon;Rhee, Young-Woo;Lee, Jin-Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.194-199
    • /
    • 2008
  • In this study, the effective method to esterify the free fatty acids in jatropha oil was examined. Compared to other plant oils, the acid value of jatropha oil was remarkably high, 11.5 mgKOH/g. So direct transesterification by a base catalyst was not suitable for the oil. After the free fatty acids were esterified with methanol, jatropha oil was transesterified. The activities of four solid acid catalysts were tested and Amberlyst-15 showed the best activity for the esterification. After constructing the experiment matrix based on RSM and analyzing the statistical data, the optimal esterification conditions were determined to be 6.79% of methanol and 17.14% of Amberlyst-15. After the pretreatment, jatropha biodiesel was produced by the transesterification using KOH in a pressurized batch reactor. Jatropha biodiesel produced could meet the major specifications of Korean biodiesel standards; 97.35% of FAME, 8.17 h of oxidation stability, 0.125% of total glycerol and $0^{\circ}C$ of CFPP.

Synthesis of Renewable Resource-derived Furan-based Epoxy Compounds and Their Adhesive Property (재생자원 유래 퓨란계 에폭시 화합물의 합성 및 접착 특성)

  • Lee, Jae-Soung;Lee, Sang-Hyeup;Jeong, Jaewon;Kim, Baekjin;Cho, Jin Ku;Kim, Hyun Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Furan-containing epoxide monomers (8, 9) were designed and synthesized as carbon-neutral, environment-friendly adhesion material. Bicyclic skeleton were constructed using the Diels-Alder reaction of furan and methyl acrylate, both readily accessible starting material from a biomass via bio-refinery process. After reduction of ester functionality, resulting hydroxyl moieties were coupled to epichlorohydrin to provide the epoxy-functionalized furanic monomers (8, 9). The structure of new furanic monomers was confirmed by $^1H$ and $^{13}C$ NMR spectroscopy. As UV-curable monomers, basic properties such as UV curing time and the extent of UV curing were evaluated by photo DSC. Photo-curing shrinkages were measured by linear variable differential transformer transducer (LVDT) and the effect of molecular structure on shrinkage was considered. In addition, new synthetic compounds showed the shear strength over 3 MPa when they were photo-cured between polycarbonate plates, which indicates these compounds are feasible to use as photo-curable adhesive materials.