• 제목/요약/키워드: Method of least squares

검색결과 1,470건 처리시간 0.037초

시스템동정의 ALS법에 관한 연구 (A Study on the ALS Method of System Identification)

  • 이동철
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.74-81
    • /
    • 2003
  • A system identification is to estimate the mathematical model on the base of input output data and to measure the output in the presence of adequate input for the controlled system. In the traditional system control field, most identification problems have been thought as estimating the unknown modeling parameters on the assumption that the model structures are fixed. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input output case with the observed noise. We suggest the adjusted least squares method as a consistent estimation method in the system identification in the case where there is observed noise only in the output. In this paper the adjusted least squares method has been developed from the least squares method and the efficiency of the estimating results was confirmed by the generating data with the computer simulations.

  • PDF

ON THE PURE IMAGINARY QUATERNIONIC LEAST SQUARES SOLUTIONS OF MATRIX EQUATION

  • WANG, MINGHUI;ZHANG, JUNTAO
    • Journal of applied mathematics & informatics
    • /
    • 제34권1_2호
    • /
    • pp.95-106
    • /
    • 2016
  • In this paper, according to the classical LSQR algorithm forsolving least squares (LS) problem, an iterative method is proposed for finding the minimum-norm pure imaginary solution of the quaternionic least squares (QLS) problem. By means of real representation of quaternion matrix, the QLS's correspongding vector algorithm is rewrited back to the matrix-form algorthm without Kronecker product and long vectors. Finally, numerical examples are reported that show the favorable numerical properties of the method.

Least Squares Estimation with Autocorrelated Residuals : A Survey

  • Rhee, Hak-Yong
    • Journal of the Korean Statistical Society
    • /
    • 제4권1호
    • /
    • pp.39-56
    • /
    • 1975
  • Ever since Gauss discussed the least-squares method in 1812 and Bertrand translated Gauss's work in French, the least-squares method has been used for various economic analysis. The justification of the least-squares method was given by Markov in 1912 in connection with the previous discussion by Gauss and Bertrand. The main argument concerned the problem of obtaining the best linear unbiased estimates. In some modern language, the argument can be explained as follow.

  • PDF

탄소성 최소 제곱 수식화와 이를 이용한 무요소법 (The Meshfree Method Based on the Least-Squares Formulation for Elasto-Plasticity)

  • 윤성기;권기찬
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.860-875
    • /
    • 2005
  • A new meshfree method for the analysis of elasto-plastic deformations is presented. The method is based on the proposed first-order least-squares formulation, to which the moving least-squares approximation is applied. The least-squares formulation for the classical elasto-plasticity and its extension to an incrementally objective formulation for finite deformations are proposed. In the formulation, the equilibrium equation and flow rule are enforced in least-squares sense, while the hardening law and loading/unloading condition are enforced exactly at each integration point. The closest point projection method for the integration of rate-form constitutive equation is inherently involved in the formulation, and thus the radial-return mapping algorithm is not performed explicitly. Also the penalty schemes for the enforcement of the boundary and frictional contact conditions are devised. The main benefit of the proposed method is that any structure of cells is not used during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are presented.

ALS법에 의한 시스템동정 (System Identification by Adjusted Least Squares Method)

  • 이동철;배종일;정형환;조봉관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2216-2218
    • /
    • 2002
  • A system identification is to measure the output in the presence of a adequate input for the controlled system and to estimate the mathematical model in the basic of input output data. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input-output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input-output case with the observed noise. In recent the adjusted least squares method is suggested as a consistent estimation method in the system identification not with the observed noise input but with the observed noise output. In this paper we have developed the adjusted least squares method from the least squares method and have made certain of the efficiency in comparing the estimating results with the generating data by the computer simulations.

  • PDF

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

좌표변환을 통한 일반최소제곱법과 토탈최소제곱법 비교연구 (Comparison between the General Least Squares method and the Total Least Squares method through coordinate transformation)

  • 박영무;김병국
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.9-16
    • /
    • 2004
  • Performing adjustments where the observation equations involve more than a single measurement are General Least Squares(GLS) and Total Least Squares(TLS). This paper introduces theory of the GLS and TLS and compared experimentally accuracy and efficiency of those through 2D conformal coordinate transformation and 2D affine coordinate transformation. In conclusion, in case of 2D coordinate transformation, GLS can produce a little more accurate and efficient than TLS. In survey fields, The GLS and TLS can be used cooperatively for adjusting the actual coordinate measurements.

  • PDF

Moving Least Squares 기법을 이용한 광대역 컨포멀 빔 형성 연구 (A Study of Broad-band Conformal Beam Forming using Moving Least Squares Method)

  • 정상훈;이강인;정현교;정용식
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.83-89
    • /
    • 2019
  • In this paper, beam forming using moving least squares method (MLSM) is studied. In the previous research, the least squares method (LSM), one of the data interpolation methods, was used to determine the desired beam pattern and obtain a beam pattern that minimizes the square of the error with the desired beam pattern. However, LSM has a disadvantage in that the beam pattern can not be formed to satisfy the exact steering angle of the desired beam pattern and the peak sidelobe level (PSLL) condition. To overcome this drawback, MLSM is used for beam forming. In order to verify, the proposed method is applied in beam forming of Bezier platform array antenna which is one of conformal array antenna platform.

일반화된 이동최소자승법과 이를 이용한 얇은 보의 무요소 해석 (Generalized Moving Least Squares Method and its use in Meshless Analysis of Thin Beam)

  • 조진연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.497-504
    • /
    • 2002
  • In meshless methods, the moving least squares approximation technique is widely used to approximate a solution space because of its useful numerical characters such as non-element approximation, easily controllable smoothness, and others. In this work, a generalized version of the moving least squares method Is introduced to enhance the approximation performance through the Information converning to the derivative of the field variable. The results of numerical tests for approximation verify the improved accuracy of the generalized meshless approximation procedure compared to the conventional moving least squares method. By using this generalized moving least squares method, meshless analysis of thin beam is carried out, and its performance is investigated.

  • PDF

Performance Comparison of Two Ellipse Fitting-Based Cell Separation Algorithms

  • Cho, Migyung
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.215-219
    • /
    • 2015
  • Cells in a culture process transform with time and produce many overlapping cells in their vicinity. We are interested in a separation algorithm for images of overlapping cells taken using a fluorescence optical microscope system during a cell culture process. In this study, all cells are assumed to have an ellipse-like shape. For an ellipse fitting-based method, an improved least squares method is used by decomposing the design matrix into quadratic and linear parts for the separation of overlapping cells. Through various experiments, the improved least squares method (numerically stable direct least squares fitting [NSDLSF]) is compared with the conventional least squares method (direct least squares fitting [DLSF]). The results reveal that NSDLSF has a successful separation ratio with an average accuracy of 95% for two overlapping cells, an average accuracy of 91% for three overlapping cells, and about 82% accuracy for four overlapping cells.