• Title/Summary/Keyword: Method of Speed Estimation

Search Result 991, Processing Time 0.029 seconds

Initial Rotor Position Detection of Single-phase Permanent Magnet Synchronous Motor using Offset Voltage (옵셋 전압을 이용한 단상 영구자석 동기 전동기의 초기 회전자 위치 검출)

  • Hwang, Seon-Hwan;Seo, Sung-Woo;Jung, Tae-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.622-627
    • /
    • 2019
  • This paper propose an initial rotor position detection method for sensorless operation of a single-phase permanent magnet synchronous motor(SP-PMSM) with asymmetric air-gap. In general, the sensorless control based on back-emf estimation is difficult to estimate the back-emf at the zero and low speed regions. For this reason, an open loop start-up technique is indispensable, and it is also necessary to detect the initial position of the rotor in order to rotate in a certain direction. In this paper, we propose a method to detect rotor polarity by adding offset voltage to high frequency voltage signal based on the magnetic characteristics of SP-PMSM. The validity and usefulness of the proposed algorithm are verified through several experimental results.

Autonomous Self-Estimation of Vehicle Travel Times in VANET Environment (VANET 환경에서 자율적 자가추정(Self-Estimation) 통행시간정보 산출기법 개발)

  • Im, Hui-Seop;O, Cheol;Gang, Gyeong-Pyo
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.107-118
    • /
    • 2010
  • Wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) enable the development of more sophisticated and effective traffic information systems. This study presents a method to estimate vehicular travel times in a vehicular ad hoc network (VANET) environment. A novel feature of the proposed method is estimating individual vehicle travel times through advanced on-board units in each vehicle, referred to as self-estimated travel time in this study. The method uses travel information including vehicle position and speed at each given time step transmitted through the V2V and V2I communications. Vehicle trajectory data obtained from the VISSIM simulator is used for evaluating the accuracy of estimated travel times. Relevant technical issues for successful field implementation are also discussed.

Real-time Virtual View Synthesis using Virtual Viewpoint Disparity Estimation and Convergence Check (가상 변이맵 탐색과 수렴 조건 판단을 이용한 실시간 가상시점 생성 방법)

  • Shin, In-Yong;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.57-63
    • /
    • 2012
  • In this paper, we propose a real-time view interpolation method using virtual viewpoint disparity estimation and convergence check. For the real-time process, we estimate a disparity map at the virtual viewpoint from stereo images using the belief propagation method. This method needs only one disparity map, compared to the conventional methods that need two disparity maps. In the view synthesis part, we warp pixels from the reference images to the virtual viewpoint image using the disparity map at the virtual viewpoint. For real-time acceleration, we utilize a high speed GPU parallel programming, called CUDA. As a result, we can interpolate virtual viewpoint images in real-time.

Performance Evaluation of an Integrated Starter-Alternator with an IPM Synchronous Machine under Sensor-less Operation

  • Xu, Zhuang;Rahman, M.F.;Wang, G.;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • This paper presents performance evaluation of an Integrated Starter-Alternator (ISA) prototype with an Interior Permanent Magnet (IPM) synchronous machine under sensor-less operation. To attain a high starting torque at zero speed and in subsequent extremely low speed range, a hybrid signal injection method is proposed. At higher speed, an improved stator flux observer is used for the stator flux estimation. This observer is able to produce accurately-estimated stator flux linkage for high performance Direct Torque and Flux Control (DTFC) implementation. The sensor-less DTFC IPM synchronous machine drive takes full advantage of the capacity of the power converter and fulfills the control specifications for the ISA. The trajectory control algorithm responds rapidly and in a well behaved manner over a wide range of operating conditions. The experimental results verify the feasibility and advantages of the system.

Modeling and Position-Sensorless Control of a Dual-Airgap Axial Flux Permanent Magnet Machine for Flywheel Energy Storage Systems

  • Nguyen, Trong Duy;Beng, Gilbert Foo Hock;Tseng, King-Jet;Vilathgamuwa, Don Mahinda;Zhang, Xinan
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.758-768
    • /
    • 2012
  • This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

Development of Estimation of Curve Radii of Road Considering Design Consistency (설계일관성을 고려한 도로 곡선반경 산정에 관한 연구)

  • Park, Je-Jin;Lee, Sang-Ha;Park, Kwang-Won;Ha, Tae-Jun
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.125-133
    • /
    • 2008
  • Achieving consistent geometric design is an important goal in highway design to ensure obtaining safe, economical and smooth traffic operation. Most evaluation of consistency is based on 'speed change' in speed profile. According to literature, the speed depends on geometric elements, speed on tangent section prior to a curve, and background around roads. Especially, the radius is the most main element mentioned in various literature. Therefore, this paper shows two ways of calculating horizontal radius on real road, that is, three-dimensional road. First of all, the radius of horizontal curve is calculated based on physical method. The calculated radius contains not only superelevation but also longitudinal grade while the current minimum radius is calculated by considering superelevation and side friction according to the point-mass equation. Secondly, the problem of composed curves with distorted appearance by overlaying sag or crest vertical alignment has been known. To quantify the extent of distortion effects, the method of calculation of real seen so called 'Perspective Radius' is developed. The paper presents the perspective radius and recommended perspective radius.

  • PDF

AFLC Development for Robust Control of Induction Dirve (유도전동기 드라이브의 강인성 제어를 위한 AFLC 개발)

  • Kim, Jong-Kwan;Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Park, Byung-Sang;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.727-728
    • /
    • 2006
  • This paper is proposed robust control based on the vector controlled induction motor drive with adaptive fuzzy learning control(AFLC). The fuzzy logic principle is first utilized for the control rotor speed. AFLC scheme is then proposed in which the adaptation mechanism is executed using fuzzy logic. Also, this paper is proposed estimation of speed of induction motor using ANN Controller. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

Sensorless Vertor Control of PMSM using Neural Networks (신경회로망을 이용한 PMSM의 센서리스 벡터제어)

  • Lee, Young-Sil;Lee, Jung-Chul;Lee, Hong-Gyun;Kim, Jong-Gwan;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.240-243
    • /
    • 2003
  • Sensorless Vector control of the permanent magnet synchronous motor(PMSM) typically requires knowledge of the PMSM structure and parameters, which in some situations are not readily available or may be difficult to obtain. In this paper, by measuring the currents of the PMSM drive, a neural-network-based rotor position and speed estimation method for PMSM is described. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to PMSM drive system. The operating characteristics controlled by neural networks control are examined in detail.

  • PDF

A Speed Sensorless Vector Control for Permanent Magnet Synchronous Motors based on an Adaptive Integral Binary Observer

  • Choi Yang-Kwang;Kim Young-Seok;Han Yoon-SeoK
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.70-77
    • /
    • 2005
  • This paper presents sensorless speed control of a cylindrical permanent magnet synchronous motor (PMSM) using the adaptive integral binary observer. In view of the composition with a main loop regulator and an auxiliary loop regulator, the normal binary observer has the feature of chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer, a new binary observer is formed by the addition of extra integral dynamics to the existing switching hyperplane equation. Also, because the parameters of the dynamic equations such as machine inertia or viscosity friction coefficient are not well known and these values can be changed during normal operations, there are many restrictions in the actual implementation. The proposed adaptive integral binary observer applies an adaptive scheme so that the observer may overcome the problems caused by using dynamic equations. The rotor speed is constructed by using the Lyapunov function. The observer structure and its design method are described. The experimental results of the proposed algorithm are presented to prove the effectiveness of the approach.

Prediction of nominal wake of a semi-displacement high-speed vessel at full scale

  • Can, Ugur;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.143-157
    • /
    • 2022
  • In this study, the nominal wake field of a semi-displacement type high-speed vessel was computed at full scale by using CFD (Computational Fluid Dynamics) and GEOSIM-based approaches. A scale effect investigation on nominal wake field of benchmark Athena vessel was performed with two models which have different model lengths. The members of the model family have the same Fr number but different Re numbers. The spatial components of nominal wake field have been analyzed by considering the axial, radial and tangential velocities for models at different scales. A linear feature has been found for radial and tangential components while a nonlinear change has been obtained for axial velocity. Taylor wake fraction formulation was also computed by using the axial wake velocities and an extrapolation technique was carried out to get the nonlinear fit of nominal wake fraction. This provides not only to observe the change of nominal wake fraction versus scale ratios but also to estimate accurately the wake fraction at full-scale. Extrapolated full-scale nominal wake fractions by GEOSIM-based approach were compared with the full-scale CFD result, and a very good agreement was achieved. It can be noted that the GEOSIM-based extrapolation method can be applied for estimation of the nominal wake fraction of semi-displacement type high-speed vessels.