• Title/Summary/Keyword: Method of Difference Analysis

Search Result 6,405, Processing Time 0.037 seconds

A Study on Classifying Body Forms for the Standards Regarding Size and Grading Method(II) (치수규격 및 그레이딩을 위한 체형 유형화에 관한 연구(II))

  • 권숙희;전은경
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.10
    • /
    • pp.45-51
    • /
    • 2000
  • This study illucidated the importance of drop Value in the resets of surveying the current values of sizing and grading. Therefore, it is meaningful to get the classification of body form with the appropriate distribution of drop values of the body. The distribution of drop value and the frequency of each form is very helpful to name the combined sizing or coverage of ready-made clothes. This study aimed at classifying body forms with various drop values using multivariate analysis for sizing and grading. Factor analysis and cluster analysis were done using measured values from unmarried women. The resets are as follows; The factor which explains body forms was obtained by factor analysis, and the representative major 18 items which have important roles in classifying body forms were selected among the measured values with high factor loading and communality. 1) The body forms were classified into 3 groups based on the characteristics, frequencies and distributions of them obtained from cluster analysis. 2) Each classified body form showed conspicuous difference in drop value and the difference of body form mainly resulted from the difference between bust and hip(drop value) in Korean unmarried women. 3) Discriminant analysis showed that the most significant discriminant factor of the trunk classification were bust circumference, upper bust circumference, hip circumference and stature. 4) The cover ratio of size studied in this study for the Korean Sizing system for women's garment were founded high.

  • PDF

A Numerical Analysis of Load Transfer Behavior of Axially Loaded Piles (축하중 재하말뚝의 하중전이 거동에 대한 수치해석)

  • 오세붕;최용규
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-106
    • /
    • 1998
  • The behavior of axially loaded pile was analyzed by two methodologies: one is the finite difference method using load transfer curves recommended by API(1993) , and the other is the numerical analysis using the FLAC program. From both analyses, load-displacement curves and load distributions along the depth were evaluated appropriately for the measured. The analysis using the FLAC could capture the nonlinearity of load-displacement curve even for unloading and reloading cases, since the unloaded stress paths of fill layer elements occurred on the failure envelop. Futhermore, the measured load transfer curves were compared with the API recommendations and with the calculations obtained front the results of the FLAC analysis for the interpretation of the transfer behavior between the soil and the pile under axial loadings. It was concluded that the atrial behavior of open ended piles at Pusan could be evaluated by both the finite difference analysis using API load transfer curves and the numerical analysis using FLAC.

  • PDF

EFFICIENCY ANALYSIS OF A DOMAIN DECOMPOSITION METHOD FOR THE TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Jun, Younbae
    • East Asian mathematical journal
    • /
    • v.37 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this paper, we analyze the efficiency of a domain decomposition method for the two-dimensional telegraph equations. We formulate the theoretical spectral radius of the iteration matrix generated by the domain decomposition method, because the rate of convergence of an iterative algorithm depends on the spectral radius of the iteration matrix. The theoretical spectral radius is confirmed by the experimental one using MATLAB. Speedup and operation ratio of the domain decomposition method are also compared as the two measurements of the efficiency of the method. Numerical results support the high efficiency of the domain decomposition method.

A Dispersion Analysis for Minimum Grids in the Frequency Domain Acoustic Wave Equation (주파수영역 음향 파동방정식에서 최소 격자수 결정을 위한 격자분산 분석)

  • Jang Seong-Hyung;Shin Chang-Soo;Yoon Kwang-Jin;Suh Sang-Young;Shin Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.2
    • /
    • pp.39-47
    • /
    • 2000
  • A great deal of computing time and a large computer memory are needed to solve wave equation in a large complex subsurface layers using the finite difference method. The computing time and memory can be reduced by decreasing the number of grid points per minimum wave length. However, the decrease of grids may cause numerical dispersion and poor accuracy. In this study we performed the grid dispersion analysis for several rotated finite difference operators, which was commonly used to reduce grids per wavelength with accuracy in order to determine the solution for the acoustic wave equation in frequency domain. The rotated finite difference operators were to be extended to 81, 121 and 169 difference stars and studied whether the minimum grids could be reduced to 2 or not. To obtain accuracy (numerical errors less than $1\%$) the following was required: more than 13 grids for conventional 5 point difference stars, 9 grids for 9 difference stars, 3 grids for 25 difference stars, and 2.7 grids for 49 difference stars. After grid dispersion analysis for the new rotated finite difference operators, more than 2.5 grids for 81 difference stars, 2.3 grids for 121 difference stars and 2.1 grids for 169 difference stars were needed. However, in the 169 difference stars, there was no solution because of oscillation of the dispersion curves in the group velocity curves. This indicated that the grids couldn't be reduced to 2 in the frequency acoustic wave equation. According to grid dispersion analysis for the determination of grid points, the more rotated finite difference operators, the fewer grid points. However, the more rotated finite difference operators that are used, the more complex the difference equation terms.

  • PDF

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

Biomechanical Analysis of Soccer Shoes According to the Difference of Stud (스터드 차이에 따른 축구화의 운동역학적 변인 비교)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.455-461
    • /
    • 2014
  • The purposes of this study were to reveal the kinematic and kinetic difference of hard ground soccer shoe, firm ground soccer shoe and soft ground soccer shoe. Soccer players were shoes of varying stud designs with some preferring the bladed studs while others opting for the conventional studded stud. Statistics were used one way-ANOVA and Tukey's Honestly Significant Difference Method. Seven healthy college soccer players were attended a test. All parameters were recorded using the Zebris system. Spatio-temporal variables were no significant difference. Lateral symmetry was statistically significant differences (p<.05). Vertical GRF parameters were no significant difference. Medial midfoot pressure, lateral midfoot pressure and central forefoot pressure were statistically significant differences (p<.05). This study demonstrates that playing surface significantly affects difference soccer shoes during soccer game. Furthermore, epidemiological investigation is warranted to determine the effects of playing surfaces on sport specific injury mechanisms.

Numerical Dispersive Characteristics and Stability Condition of the Multi-Resolution Time Domain(MRTD) Method (다해상도 시간영역법의 수치적 분산특성과 안정조건)

  • 홍익표;유태훈;윤영중;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 1996
  • The numerical dispersive characteristics and the numerical stability confition of the Multi-Resolution Time-Domain(MRTD) method are calculated. A dispersion analysis of the MRTD schemes including a comparison to Yee's Finite-Difference Time-Domain(FDTD) method is given. The superiority of the MRTD method to the spatial discretization is shown. The required computational memory can be reduced by using the MRTD method. We expect that the MRTD method will be very useful method for numerical modelling of electromagnetics.

  • PDF

Evaluation of required seismic gap between adjacent buildings in relation to the Egyptian Code

  • Hussein, Manar M.;Mostafa, Ahmed A.;Attia, Walid A.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.219-230
    • /
    • 2021
  • International seismic codes stipulate that adjacent buildings should be separated by a specified minimum distance, otherwise the pounding effect should be considered in the design. Recent researches proposed an alternative method (Double Difference Combination Rule) to estimate seismic gap between structures, as this method considers the cross relation of adjacent buildings behavior during earthquakes. Four different criteria were used to calculate the minimum separation distance using this method and results are compared to the international codes for five separation cases. These cases used four case study buildings classified by different heights, lateral load resisting systems and fundamental periods of vibrations to assess the consistency in results for the alternative methods. Non-linear analysis was performed to calculate the inelastic displacements of the four buildings, and the results were used to evaluate the relation between elastic and inelastic displacements due to the ductility of structural elements resisting seismic loads. A verification analysis was conducted to guarantee that the separation distance calculated is sufficient to avoid pounding. Results shows that the use of two out of the four studied methods yields separation distances smaller than that calculated by the code specified equations without under-estimating the minimum separation distance required to avoid pounding.

Analysis of the Transversely fed EMC Microstrip Dipole Array Antenna (급전선과 직교된 전자기결합 마이크로스트립 다이폴 배열안테나의 해석)

  • 손영수;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.2
    • /
    • pp.105-116
    • /
    • 1996
  • The design and analysis of the transversely fed EMC(electromagnetically coupled) microstrip dipole have been accomplished by using the integral equation and MOM(method of moment)in frequency domain in order to find the current distribution of the dipole. In this study, we proposed the possibilities for design and analysis of EMC micro-strip dipole array antenna by means of calculating the current distribution of each dipole directly using the FDTD(finite difference time domain) method. In this case, we applied the formulation which is the finite difference expression of the Maxwell's integral equation. From the current distribution of each dipole, we calculated the far field electric component and showed that the calculation process and running time was reduced with respect to the method which calculates the radiation field with surface electric and magnetic current density.

  • PDF

Analysis of Rolled Beam Bridge by means of Specially Orthotropic Laminates Theory (특별직교이방성 적층판이론에 의한 압연형교의 해석)

  • Han, Bong-Koo;Lee, Chang-Soo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • The specially orthotropic plate theory is used for analysis of panels made of girders and cross-beams. The cross-sections of both girders and cross-beams are H-types. The results of application of this method to rolled beam bridge by using specially orthotropic plate theory is presented. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. According to numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory.

  • PDF