• Title/Summary/Keyword: Method of Difference Analysis

Search Result 6,405, Processing Time 0.038 seconds

An Analysis of Dynamic Characteristics of Air-Lubricated Slider Bearing by Using Perturbation Method (섭동법을 이용한 공기윤활 슬라이더 베어링의 동특성 해석)

  • Gang, Tae-Sik;Choe, Dong-Hun;Jeong, Tae-Geon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1520-1528
    • /
    • 2000
  • This study presents a method for determining bearing stiffness and damping coefficients of air-lubricated slider bearing, and shows influences of air-bearing surface geometry(recess depth, crown an d pivot location) on flying attitude and dynamic characteristics. To derive the dynamic lubrication equation, the perturbation method is applied to the generalized lubrication equation which based on linearized Boltzmann equation. The generalized lubrication equation and the dynamic lubrication equation are converted to a control volume formulation, and then, the static and dynamic pressure distributions are calculated by finite difference method. The recess depth and crown of the slider show significantly influence on flying attitude and dynamic characteristics comparing with those of pivot location.

Study on the Numerical Analysis of Nuclear Reactor Kinetics Equations (원자로 동특성 방정식의 수치해석에 관한 연구)

  • Jae Choon Yang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.98-109
    • /
    • 1983
  • A two-step alternating direction explicit method is developed to solve the space-dependent reactor kinetics equations in two space dimensions. As a special case in the general class of alternating direction implicit methods, this method is analysed for accuracy and stability. To test the validity of this method it is compared with the implicit-difference method used in the TWIGL program. It is shown that the two methods are closely related. The time dependent neutron fluxes of the pressurized water reactor (PWR), during control rod insertion, and, of the CANDU-PHW reactor, in case of postulated loss of coolant accident, are obtained from the numerical calculation results.

  • PDF

3-D Dynamic Response of Buried Pipelines (매설관의 3차원 동적응답거동)

  • Jeong, Jin-Ho;Kim, Chun-Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.27-35
    • /
    • 2011
  • Larbi (1995) and Jeong et al. (2005) analyzed the various boundary end conditions of buried pipelines using the mode superposition method as one of the dynamic analysis methods of buried pipelines. However, it is very complicated to derive calculation equations for the solutions to be obtained by this method, and even the derived calculation equations need separate computer programming for the numerical analysis in order to obtain the solutions. For this reason, this method is extremely difficult for engineers to apply in their field works. In consideration of the shortcoming of the mode superposition method, this study's purpose is to propose a 3D dynamic finite difference method, which is more easily applicable in the field. For this purpose, we tested the accuracy of the 3D dynamic analysis and compared the results with those of the mode superposition method and certified that the 3D dynamic analysis could be an alternative method to obtain the seismic responses of the pipelines.

Parametric Study with the Different Size of Meshes in Numerical Analysis Considering the Dynamic Soil-Pile Interactions (지반-말뚝 동적 상호 작용을 고려한 말뚝의 수치 모델링 : 메쉬 크기와 형상에 대한 매개 변수 연구)

  • Na, Seon-Hong;Kim, Seong-Hwan;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1441-1446
    • /
    • 2009
  • Numerical analysis is a powerful method in evaluating the soil-pile-structure interaction under the dynamic loading, and this approach has been applied to the practical area due to the development of computer technology. Finite Difference Method, one of the most popular numerical methods, is sensitive to the shape and the number of mesh. However, the trial and error approach is conducted to obtain the accurate results and the reasonable simulation time because of the lack of researches about mesh size and the number. In this study, FLAC 3D v3.1 program(FDM) is used to simulate the dynamic pile model tests, and the numerical results are compared with the 1G shaking table tests results. With the different size and shape of mesh, the responses of pile behavior and the simulation time are estimated, and the optimum mesh sizes in dynamic analysis of single pile is studied.

  • PDF

Analysis on Po1y(lactic acid) Melt Spinning Dynamics (Poly(lactic acid) 용융방사공정의 동역학 해석)

  • Oh, Tae-Hwan;Kim, Seong-Cheol
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.245-252
    • /
    • 2009
  • Profiles development of melt spinning process of poly(lactic acid) (PLA) was simulated via a numerical method and the radial temperature distribution was calculated using finite difference method. The spinning speed ranged from 1 km/min to 5 km/min was analyzed and the effect of spinning conditions on the radial temperature distribution was investigated. At low spinning speed, the difference between PLA and poly(ethylene terephthalate) (PET) was relatively small. As the spinning speed increased, the difference in velocity profile became prominent. PLA showed a slower spinning speed than PET and solidified more slowly. The temperature difference between the core and surface of the PLA filament reached 4.6 K, which was less than that of PET filament with a difference of 10.4 K. The radial temperature difference increased with increasing the cooling-air velocity and the spinning temperature.

Displacement-Load Method for Semi-Analytical Design Sensitivity Analysis (준해석 설계민감도를 위한 변위하중법)

  • Yoo Jung Hun;Kim Heung Seok;Lee Tae Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1590-1597
    • /
    • 2004
  • Three methods of design sensitivity analysis for structures such as numerical method, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis can provide very exact result, it is difficult to implement into practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable fur most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate in nonlinear design sensitivity analysis because its computational cost depends on the number of design variables and large numerical errors can be included. Thus the semi-analytical method is more suitable for complicated design problems. Moreover, semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure fur the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and the computational technique is proposed for evaluating the partial differentiation of internal nodal force, so called pseudo-load. Numerical examples coupled with commercial finite element package are shown to verify usefulness of proposed semi-analytical sensitivity analysis procedure and computational technique for pseudo-load.

A CONSERVATIVE NONLINEAR DIFFERENCE SCHEME FOR THE VISCOUS CAHN-HILLIARD EQUATION

  • Choo, S.M.;Chung, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.53-68
    • /
    • 2004
  • Numerical solutions for the viscous Cahn-Hilliard equation are considered using the Crank-Nicolson type finite difference method which conserves the mass. The corresponding stability and error analysis of the scheme are shown. The decay speeds of the solution in $H^1-norm$ are shown. We also compare the evolution of the viscous Cahn-Hilliard equation with that of the Cahn-Hilliard equation numerically and computationally, which has been given as an open question in Novick-Cohen[13].

Analysis of Pungent Principles of Capsicum Fruit by HPLC (고속 액체크로마토그래피에 의한 고추중의 신미성분 분석)

  • 이충영;우상규;이윤수;권익부
    • Journal of Food Hygiene and Safety
    • /
    • v.4 no.3
    • /
    • pp.191-198
    • /
    • 1989
  • The analysis condition for determination of capsaicin and dihydrocapsaicin, major pungent principles of capsicum fruit, with high performance liquid chromatography was studied and the difference of those content according to species, cultivated region and drying method was investigated. The capsaicins were extracted effectively with 70% ethanol for 1 hr at $60^{\circ}C$. As a result of reproduciblity and recovery test, the calculation of analysis data was reasonable based on the peak area. The content of capsaicins was different with species, cultivated region and drying method, respectively. Especially, the difference depending on drying method was remarkable; the sun dried sample showed higher value than that of the oven dried sample, about maximum 80% for capsaicin and 60% for dihydrocapsaicin.

  • PDF

Construction Cost Analysis of HPC Method by PC Construction Project Cases (사례분석에 의한 HPC공법의 공사비 분석)

  • Noh, ju-seong;Kim, Jae-yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.101-102
    • /
    • 2017
  • This study was carried out as basic study to apply to construction site the HPC method which is being developed. The construction cost of HPC method was analyzed in comparison with conventional method (half slab method). With regard to research method, it was decided that data on construction work carried out by half slab method was analyzed. According to the results of study, in case of being applied to the construction work using a divided column, the number of columns was decreased. So, it was shown that member production cost, and transport and assemblage cost reduced. In case of being applied to construction work using an undivided column, the analysis showed that there was little difference in construction cost. Therefore, the analysis showed that, if HPC construction method was applied to large structure using a large column, the construction cost was reduced to some extent in comparison with conventional half slab method.

  • PDF

Analysis of Factors Affecting Successful Bid Price in Public Construction Technical Bidding (공공공사 기술형 입찰에서의 낙찰가격에 미치는 요인 분석)

  • Lee, Jung-Woong;Yi, Sung-Wook
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.1
    • /
    • pp.213-230
    • /
    • 2022
  • Purpose - The purpose of this study is to find out any potential factors for explanatory variables when calculating the virtual successful bid rate in case of no collusion. Design/methodology/approach - An empirical analysis was conducted in this study with a regression analysis that included 725 bid samples under the public construction technical type bidding. Findings - The result of the basic analysis showed that there are several factors affecting the successful bid rate. First, collusion variable; second, government variable; third, successful bidder design score variable and the number of bidder variable among bidding features; fourth, turnkey variable based on the alternative method; fifth, civil works variable and plant works variable based on building work; sixth, asset variable and the fourth-quarter performance difference variable. However, the technical proposal method variable among bidding features was found to be statistically insignificant in column(4). Research implications or Originality - The significance of this research is that new variable such as the government variable and the fourth-quarter performance difference variable were added in the regression model, which showed statistically significant research results.