• Title/Summary/Keyword: Method of Compaction Technique

Search Result 41, Processing Time 0.035 seconds

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.

A Study on the Optimization Technique for IC Compaction Problem (IC 밀집화를 위한 최적기술에 대한 연구)

  • Yi, Cheon-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.115-123
    • /
    • 1989
  • This paper describes a new method of mask compaction to formulate a mixed integer linear programming problem from a user defined stick diagram. By solving this mixed integer program, a compacted and design rule violation free layout is obtained. Also, a new efficient algorithm is given which solves the longest problem in the constraint graph.

  • PDF

The Compaction and Compressive Strength Properties of CSG Material Reinforced Polypropylene Fiber (폴리프로필렌 섬유 보강 CSG 재료의 다짐 및 압축강도 특성)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.73-81
    • /
    • 2010
  • The cemented sand and gravel (CSG) method is a construction technique that adds cement and water to rock-like materials, such as rivered gravel or excavation muck which can be obtained easily at areas adjacent to dam sites. This study was performed to evaluate the compaction and compressive strength properties of stress-strain, elastic modulus and fracture mode CSG materials reinforced polypropylene fiber. Polypropylene fiber widely used for concrete reinforcement is randomly distributed into cemented sand. The two types of polypropylene fiber (monofillament and fibrillated fiber) were used and fiber fraction ratio was 0, 0.2 %, 0.4 %, 0.6 % and 0.8 % by the weight of total dry soil. The effect of fiber fraction ratio and fiber shape on compaction and compressive strength were investigated. The optimum moisture contents (OMC) of CSG material increased as fiber fraction increased and the dry density of CSG material decreased as fiber fraction. Also, the maximum increase in compressive strength was obtained at 0.4 % content of monofillament and fibrillated fiber. CSG material behaviour was controlled not only by fiber fraction but also fiber distribution, fiber shape and fiber type.

Study on Lond Transfer Characteristics of Sand Compaction Piles in Soft Soil Deposits (연약지반의 모래다짐말뚝에 대한 하중전이 연구)

  • Kim Jaekwon;Kim Soo-Il;Jung Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.183-196
    • /
    • 2004
  • Sand Compaction Pile (SCP) is a soft-ground improvement technique used for not only accelerating consolidation but also increasing bearing capacity of soils. In this study, laboratory tests and 3-D finite element analysis were peformed to investigate the characteristics of load transfer in SCP with an emphasis on free-strain behavior of piles with low replacement ratios in the range of 30 to $50\%$. Through these focused tests and numerical analyses, we proposed a simplified method to analyze the load transfer characteristics of SCP in soft ground. Moreover, it was shown that estimated normal stresses in SCP using the proposed method were in a reasonable agreement with actual values.

Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network (다중회귀분석 및 인공신경망을 이용한 자갈다짐말뚝 개량지반의 극한 지지력 예측)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.27-36
    • /
    • 2017
  • Gravel compaction pile method has been widely used to improve the soft ground on the land or sea as one of the soft ground improvement technique. The ultimate bearing capacity of the ground reinforced by gravel compaction piles is affected by the soil strength, the replacement ratio of pile, construction conditions, and so on, and various prediction equations have been proposed to predict this. However, the prediction of the ultimate bearing capacity using the existing models has a very large error and variation, and it is not suitable for practical design. In this study, multiple regression analysis was performed using field loading test results to predict the ultimate bearing capacity of ground reinforced by gravel compaction pile, and the most efficient input variables are selected through evaluation of error by leave one out cross validation, and a multiple regression equation for the prediction of ultimate bearing capacity was proposed. In addition, the prediction error was evaluated by applying artificial neural network using the selected input variables, and the results were compared with those of the existing model.

Settlement Behavior of Composition Ground Improved by Recycled-Aggregate Porous Concrete Pile (순환골재 다공질 콘크리트 말뚝에 의한 복합지반의 침하 거동)

  • Kim, Se-Won;You, Seung-Kyong;Lee, Chang-Min;Cho, Sung-Min;Shim, Min-Bo;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1623-1629
    • /
    • 2008
  • The purpose of this research is to assess the application of recycled-aggregate that is gained from construction wastes as the material of compaction pile method. At the same time, the development of the new technique rectifies defects of the existing compaction pile method for soft ground improvement. In this research, model tests were conducted for analyzing the effect of the soft ground improvement by porous concrete pile using recycled aggregate. Through the results of the model tests, the behavior of settlement on composition ground with surcharge pressure were elucidated.

  • PDF

Fabrication of Al 6061 Foamable Precursor by Powder Metallurgical and Induction Heating Method (P/M법과 유도가열 공정을 이용한 발포용 6061 Al 합금 프리커서 제조)

  • 윤성원;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.5
    • /
    • pp.457-464
    • /
    • 2003
  • In the powder compact melting technique, proper precursor fabrication is very important because density distribution after foaming and foamability are determined during precursor fabrication process. The fabrication of the precursor has to be performed very carefully because any residual porosity or other defects will lead to poor results in further processing. In order to evaluate the effect of the compaction parameters on the kinetics of the foaming process, a series of experiments were performed. In this study, aluminium foams with a closed cell structure were fabricated by using both the powder compact method and the induction heating process. A proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of precursor. To establish the foamable precursor fabrication conditions, effects of process parameters such as the titanium hydride content (0.3∼1.5 wt.%), pressing pressure of the foamable precursor (50∼150kN) on the pore morphology were investigated.

A Numerical Study on the Prevention of Clogging in Granular Compaction Pile (쇄석다짐말뚝에 발생하는 간극막힘 저감방안에 관한 수치해석적 연구)

  • Jeong, Jaewon;Lee, Seungjun;Park, Nowon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2013
  • Recently, engineering problems such as long-term settlement, differential settlement, and the resultant structural damage, have been frequently reported at construction sites. Use of Sand Compaction Piles(SCP) and Granular Compaction Piles(GCP) are good at remedying existing problems, improving bearing capacity and promoting consolidation. However, such compaction piles have the potential for clogging, which would limit their usability. Investigations into the potential for clogging in SCP, GCP, and GCP mixed with sand has not been thoroughly conducted and is the objective of this current study. Large scale direct shear tests were performed on sections of SCP, GCP, and sand mixed GCP to evaluate bearing capacity. Discrete Element Method analyses were conducted with PFC3D and Finite Element Analyses were conducted with MIDAS GTS to propose an algorithm to help reduce clogging in the granular compaction piles. Results from the large scale direct shear test and multiple simulations suggest a 70% gravel and 30% sand mixing ratio to be optimal for bearing capacity and reducing clogging.

Mix design of CSG method (CSG 공법적용을 위한 배합설계기법)

  • Kim, Ki-Young;Jeon, Je-Sung;Cho, Sung-Eun;Lee, Jong-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.293-301
    • /
    • 2005
  • The CSG(Cemented Sand and Gravel) method is construction technique using as raw materials earth and gravel generated from a local construction site, mixing them with cement and rolling with vibration rollers. Recently, The use of this method for cofferdam and large dam is gradually increasing in Japan. The purpose of an CSG mix design is to develop project specific properties to meet the structure design requirements. But uniform mix design of CSG method has not yet been established. The experience of practitioners from the geotechnical and concrete disciplines has given rise to two genernal approaches to mix design for CSG. This paper reports the concept of how to set the mix design according to modified Proctor compaction test process and the test results on properties such as compaction, compressive strength and modulus of elasticity that obtained by unconfined compression test.

  • PDF