• Title/Summary/Keyword: Method R

Search Result 15,212, Processing Time 0.04 seconds

Studies on the Effects of Rice Plant on the Changes of Materials in Submerged Paddy Soils (수도재배(水稻栽培)가 답상태토양(畓狀態土壤)의 물질변화(物質變化)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.2
    • /
    • pp.71-97
    • /
    • 1974
  • Many studies on the changes of the materials in the water-logged paddy soil have been reported, but there will be several problems to apply them on the field soil. The main differences between the method of soil packed in beaker or column tube to that of natural field furrow slice are with or without of the rice root and the effect of water percolation. On the other hand, the mechanism of the water percolation on the changes of material in the natural field furrow slice are gradually understood. The purpose of this experiment is to know the effect of the rice cultivation on the chemical and physical changes of material in the water-logged paddy soil. Obtained results are as follows. 1. The physical and chemical changes on the water-logged paddy soil in the non-planted control-plot were nearly the same as the beaker or column tube experiment, while in the planted plot, slightly altered patterns were observed. 2. The relation between the number of tillers and total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, Fe and Mn in the leachate showed very high significance. T hisresult showed that the leaching of those cation was promoted by growing of the rice r- of the rice root. 3. On the other hand, the concentration of the potassium, silica and phosphorus in leachates was gradually decreased and that of $NH_4$-N could not detect after the stage of active tillering. These facts revealed that such components were absorbed by rice plant. 4. The highly significant correlation between the number of tillers and the concentration of the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn in the percolated water was observed except that of $Mg^{{+}{+}}$. It was also showed that the rice root promoted the leaching of those cation. 5. The very high significance in the correlation between $HCO_3{^-}$ and the number of tillers indicated that the higher activity of the rice root was, the more $HCO_3{^-}$ concentration in the leachate was increased. 6. The relationship between the $HCO_3{^-}$ and the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn was appeared very highly significant. $HCO_3{^-}$, the metabolite of the rice root, promoted the leaching of $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$ and Mn. This fact might be a result that these cations were leached as the form of bicarbonate. 7. The iron in the leachate was the form of $Fe^{{+}{+}}$ and the correlation between $Fe^{{+}{+}}$ and $HCO_3{^-}$ was very highly significant. This result indicated that it seemed to be ferrous bicarbonate when it is leached out. 8. In the rhizosphere, ferrous iron was decreased gradually and the concentration of glucose was as high as 2 to 3 times in comparison with the other parts of the soil. These facts were the same as the previous reports in which rhizosphere was oxidized by the oxigen excreted from the root, and was enriched by the organic matter which was also excreted from the root and accumulated residues of the root. 9. ${\beta}$-Glucosidase and phosphatase activity in the rhizosphere was higher than that of the other parts of the soil. This facts might be attributed to the vigorous activity of microorganism in the rhizosphere where glucose concentration was high. 10. The pH in the leachate of the planted plot was lower than that of control, and the Eh on the planted soil was elevated in the last stage.

  • PDF

The Effect of Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor on Oxidant Injury to Cultured Rat Lung Microvascular Endothelial Cells (산화질소 공여물과 산화질소 합성효소 길항제가 백서 폐미세혈관 내피세포 산화제 손상에 미치는 영향)

  • Chang, Joon;Michael, John R.;Kim, Se-Kyu;Kim, Sung-Kyu;Lee, Won-Young;Kang, Kyung-Ho;Yoo, Se-Hwa;Chae, Yang-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1265-1276
    • /
    • 1998
  • Background : Nitric oxide(NO) is an endogenously produced free radical that plays an important role in regulating vascular tone, inhibition of platelet aggregation and white blood cell adhesion to endothelial cells, and host defense against infection. The highly reactive nature of NO with oxygen radicals suggests that it may either promote or reduce oxidant-induced cell injury in several biological pathways. Oxidant injury and interactions between pulmonary vascular endothelium and leukocytes are important in the pathogenesis of acute lung injury, including acute respiratory distress syndrome(ARDS). In ARDS, therapeutic administration of NO is a clinical condition providing exogenous NO in oxidant-induced endothelial injury. The role of exogenous NO from NO donor or the suppression of endogenous NO production was evaluated in oxidant-induced endothelial injury. Method : The oxidant injury in cultured rat lung microvascular endothelial cells(RLMVC) was induced by hydrogen peroxide generated from glucose oxidase(GO). Cell injury was evaluated by $^{51}$chromium($^{51}Cr$) release technique. NO donor, such as S-nitroso-N-acetylpenicillamine(SNAP) or sodium nitroprusside(SNP), was added to the endothelial cells as a source of exogenous NO. Endogenous production of NO was suppressed with N-monomethyl-L-arginine(L-NMMA) which is an NO synthase inhibitor. L-NMMA was also used in increased endogenous NO production induced by combined stimulation with interferon-$\gamma$(INF-$\gamma$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), and lipopolysaccharide(LPS). NO generation from NO donor or from the endothelial cells was evaluated by measuring nitrite concentration. Result : $^{51}Cr$ release was $8.7{\pm}0.5%$ in GO 5 mU/ml, $14.4{\pm}2.9%$ in GO 10 mU/ml, $32.3{\pm}2.9%$ in GO 15 mU/ml, $55.5{\pm}0.3%$ in GO 20 mU/ml and $67.8{\pm}0.9%$ in GO 30 mU/ml ; it was significantly increased in GO 15 mU/ml or higher concentrations when compared with $9.6{\pm}0.7%$ in control(p < 0.05; n=6). L-NMMA(0.5 mM) did not affect the $^{51}Cr$ release by GO. Nitrite concentration was increased to $3.9{\pm}0.3\;{\mu}M$ in culture media of RLMVC treated with INF-$\gamma$ (500 U/ml), TNF-$\alpha$(150 U/ml) and LPS($1\;{\mu}g/ml$) for 24 hours ; it was significantly suppressed by the addition of L-NMMA. The presence of L-NMMA did not affect $^{51}Cr$ release induced by GO in RLMVC pretreated with INF-$\gamma$, TNF-$\alpha$ and LPS. The increase of $^{51}Cr$ release with GO(20 mU/ml) was prevented completely by adding 100 ${\mu}M$ SNAP. But the add of SNP, potassium ferrocyanate or potassium ferricyanate did not protect the oxidant injury. Nitrite accumulation was $23{\pm}1.0\;{\mu}M$ from 100 ${\mu}M$ SNAP at 4 hours in phenol red free Hanks' balanced salt solution. But nitrite was not detectable from SNP upto 1 mM The presence of SNAP did not affect the time dependent generation of hydrogen peroxide by GO in phenol red free Hanks' balanced salt solution. Conclusion : Hydrogen peroxide generated by GO causes oxidant injury in RLMVC. Exogenous NO from NO donor prevents oxidant injury, and the protective effect may be related to the ability to release NO. These results suggest that the exogenous NO may be protective on oxidant injury to the endothelium.

  • PDF