• 제목/요약/키워드: Methanol decomposition

검색결과 47건 처리시간 0.022초

장거리 열수송을 위한 메탄올 분해 촉매에 대한 실험적 연구 (An experimental study on methanol decomposition catalysts for long distance-heat transportation)

  • 문승현;박성룡;윤형기;윤기준
    • 설비공학논문집
    • /
    • 제10권3호
    • /
    • pp.334-342
    • /
    • 1998
  • In this experimental study, methanol was chosen as a system material for a long -distance heat transportation. Not only transition metals but also noble metals were investigated as an active component, and several metal oxides, such as ${\gamma}$-$Al_2$,$O_3$, $SiO_2$, etc. as a support. In general, transition metal catalysts absorbed more heat than noble metal catalysts. The amount of heat absorption and CO selectivity depends on temperature and methanol partial pressure, and 25$0^{\circ}C$ Ni/$SiO_2$ catalyst showed the best result for methanol decomposition reaction.

  • PDF

장거리 열수송을 위한 메탄올 분해/합성 반응 최적화 조건의 실험적 연구 (An Experimental Study on the Optimal Conditions of Decomposition/Synthesis of Methanol for Heat Transport from Long Distance)

  • 윤석만;문승현;이승재;최순영
    • 에너지공학
    • /
    • 제19권3호
    • /
    • pp.195-202
    • /
    • 2010
  • 최근 국내 연간 1차 에너지 사용량의 약 30% 이상이 폐열로 손실되어지고 있다. 이러한 현실을 타개하기 위하여, 본 논문에서는 장거리 열수송시 에너지 손실을 최소화할 수 있는 신기술로 화학 열변환을 이용한 장거리 열수송 기술을 채택하여, 화학 열변환에 있어서의 최적조건 도출을 목적으로 하였다. 화학 열변환을 위한 반응에 대해서는 많은 연구와 기술개발이 이루어지고 있으며, 그 중 물질이 안정하고, 값이 저렴하며, 생성물이 가스인 메탄올 분해 합성 반응이 가장 타당한 것으로 판단되었다. 본 연구에서는 장거리 열수송 기술 개발에 필요한 메탄올 분해 합성 반응 촉매를 각각 선정하여, 열수송 시스템 구축을 위한 메탄올 분해 합성 반응의 최적화 조건 도출을 위한 실험 연구를 수행하였다. 메탄올 합성 반응에서는 온도, 압력, $H_2$/CO ratio, 공간 속도, 촉매 형태에 따른 영향을 보았고, 메탄올의 분해 반응에서는 온도, 공간속도, 촉매 형태를 변수로 하여 상압에서 영향을 분석하여 메탄올 분해 합성 반응의 최적화 조건을 제시하였다.

플라즈마 리액터 및 오존분해 촉매를 이용한 메탄올 및 에탄올로부터 수소발생특성 (Characteristics of Hydrogen Production from Methanol and Ethanol Using Plasma Reactor and Ozone Decomposition Catalyst)

  • 구본국;김영춘;장문국;김종현;박재윤;한상보
    • 조명전기설비학회논문지
    • /
    • 제25권10호
    • /
    • pp.116-124
    • /
    • 2011
  • In this work, the effect of the initial concentration of methanol and ethanol, and the addition of oxygen molecules were discussed to improve the hydrogen generation using non-thermal plasma reactor effectively. In addition, the effect of ozone decomposition catalyst of manganese dioxide and its quantity was investigated. First, hydrogen concentration increased until an initial concentration of about 40,000[ppm] of methanol and thereafter it was saturated. Henceforth, hydrogen concentration decreased with increasing the oxygen percent on the carrier gas of nitrogen about both substances. Related with the effect of catalyst, it increased upto 60[g], but it was not changed largely after that. Consequently, it is confirmed that the hybrid process using plasma process and catalytic surface chemical reaction is a very promising way to increase the efficiency of hydrogen generation as investigated in this work.

Ni-Cu/SiO$_2$촉매 상에서의 메탄올 분해 반응 (Decomposition Reaction of Methanol over Ni-Cu/SiO$_2$Catalyst)

  • 박지영;문승현;윤형기;박성룡;이상남;정승용
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.65-71
    • /
    • 1996
  • Ni-Cu를 SiO$_2$에 담지시켜 공간속도(Space Velocity; S.V), 메탄올 분압, 반응온도 및 Ni-Cu 조성비에 따른 메탄올 분해 반응의 활성을 조사하였다. S.V는 10,000~30,000h$^{-1}$, 반응온도는 150~40$0^{\circ}C$까지 변화시켰으며 Cu/(Ni+Cu)비는 0, 0.25, 0.5, 0.75, 1로 변화시켜 보았다. Ni 단일 촉매의 경우 온도가 상승하면서 전환율이 100%에 도달함에 따라 CO의 선택도가 급감소하는 반면 Ni에 Cu를 첨가함으로써 높은 선택도를 유지하였다. 반응의 주생성물로서 CO와 H$_2$가 생성되었고 $CO_2$와 CH$_4$가 부생성물로서 주로 생성되었다.

  • PDF

호열성 사상균 Thermoascus aurantiacus의 알코올분해대사 관련 효소학적 특성 (Enzyme Production Related to Alcohol Metabolism from Thermophilic Fungus Thermoascus aurantiacus)

  • 고희선;김현수
    • 한국미생물·생명공학회지
    • /
    • 제34권3호
    • /
    • pp.216-220
    • /
    • 2006
  • 본 균의 생육 및 효소생산에 유용한 탄소원으로서 자연계의 식물에 풍부한 펙틴을 탄소원으로 할 경우, 그 생육도는 전분보다 뛰어났으며, alcohol oxidase와 catalase의 생산량도 높아지는 것으로 나타났다. 특히 alcohol oxidase의 경우는 전분의 15배 이상의 생산량을 보여 본 균과 펙틴 이용성과의 관계를 시사하였고, 세포외 pectin esterase, pectinase등의 높은 활성이 검출되어 이를 증명하였다. 또한 alcohol oxidase 반응에서 생성되는 물질인 formaldehyde를 산화하는 formaldehyde dehydrogenase와, formate를 산화하여 $CO_2$를 생성하는 formate dehydrogenase의 반응을 발견하여, 본 균의 pectin 이용성과 관련한 일련의 에너지 대사계의 존재를 추정할 수 있었다.

피라칸타 추출물의 항산화 효능에 관한 연구 (A Study of Antioxidant Effects of Pyracantha angustifolia(Franch.) C. K. Schneid Extract)

  • 이광수
    • 한국식품영양학회지
    • /
    • 제30권6호
    • /
    • pp.1286-1291
    • /
    • 2017
  • In this study, Pyracantha angustifolia (Franch.) C. K. Schneid was extracted with 70% methanol at room temperature for 48 hrs and concentrated under reduced pressure to measure its total polyphenol contents; furthermore, the effect of electron donating ability was examined. Methylene chloride, ethyl acetate, and methanol were used to fractionate the extract to testify total polyphenol contents, electron donating abilities, the removal abilities of superoxide radical as well as hydrogen peroxide. The total polyphenol contents were $2007.30{\pm}109.28{\mu}g\;GAE/mL$ in 70% methanol extract, $273.39{\pm}10.19{\mu}g\;GAE/mL$ in methylene chloride fraction, $80.57{\pm}0.64{\mu}g\;GAE/mL$ in ethyl acetate fraction, and $1,160.87{\pm}44.71{\mu}g\;GAE/mL$ in methanol fraction. The total polyphenol contents showed significant differences (p<0.05) between the solvents. The electron donating ability was $79.07{\pm}7.31%$ for 70% methanol extract, $22.34{\pm}0.64%$ for methylene chloride fraction, $5.33{\pm}0.28%$ for ethyl acetate fraction, and $32.26{\pm}1.10%$ for methanol fraction. The electron donating abilities were significantly different(p<0.05) between the solvents. The removal ability of superoxide radical was $0.018{\pm}0.003$ for 70% methanol extract, $0.007{\pm}0.002$ for methylene chloride fraction, $0.0147{\pm}0.003$ for ethyl acetate fraction, and nothing for methanol fraction. The measurement of hydrogen peroxide decomposition was $0.022{\pm}0.0046$ for 70% methanol extract, $0.0027{\pm}0.0015$ for methylene chloride fraction, $0.0037{\pm}0.0012$ for ethyl acetate fraction, and $0.0009{\pm}0.0001$ for methanol fraction.

Preparation and Characterization of MWCNT-g-Poly (Aniline-co-DABSA)/Nafion® Nanocomposite Membranes for Direct Methanol Fuel Cells

  • Abu Sayeed, Md.;Kim, Young Ho;Kim, Chorong;Park, Younjin;Gopalan, A.I.;Lee, Kwang-Pill;Choi, Sang-June
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2657-2662
    • /
    • 2013
  • Multiwalled carbon nanotube (MWCNT)-g-poly (aniline-co-2,5-diaminobenzenesulfonic acid) (DABSA) reinforced Nafion$^{(R)}$ nanocomposite membranes were prepared and characterized for direct methanol fuel cells (DMFCs). The nanocomposite membranes with approximately $90{\mu}m$ thickness were prepared by the water assisted solution casting method. To evaluate the properties of nanocomposite membranes for DMFC applications, the nanocomposite membranes were characterized by methanol and water uptake, thermal stability, and ion exchange capacity (IEC). Furthermore, oxidative stability measurements in terms of the hydrogen peroxide decomposition rate that represent the oxidative stability of the membranes were examined. The methanol uptake values of the nanocomposite membranes were dramatically decreased compared to the cast Nafion$^{(R)}$ membranes. The IEC values of the nanocomposite membranes were increased about 30% compared to the cast Nafion$^{(R)}$ membrane.

유기용매별 맥문동 추출물의 항산화 활성 연구 (Antioxidant Activities of Liriope platyphylla L. Extracts Obtained from Different Solvents)

  • 장재선
    • 한국식품영양학회지
    • /
    • 제31권4호
    • /
    • pp.543-548
    • /
    • 2018
  • This study was conducted to investigated the antioxidant activities of extract for Megmoondong fruit. Liriope platyphylla L. was extracted with 70% methanol at room temperature for 48 hr and concentrated under reduced pressure to measure its total polyphenol contents and electron donating ability. The total polyphenol contents were $7,253.50{\pm}335.43{\mu}g\;GAE/mL$ in 70% methanol extract, $1,239.77{\pm}9.30{\mu}g\;GAE/mL$ in methylene chloride fraction, $919.30{\pm}50.83{\mu}g\;GAE/mL$ in methanol fraction, $105.44{\pm}2.04{\mu}g\;GAE/mL$ in ethyl acetate fraction. The total polyphenol contents showed significant differences (p<0.05) between the solvents. The electron donating ability was $69.17{\pm}12.61%$ for 70% methanol extract, $33.11{\pm}1.77%$ for methylene chloride fraction, $5.19{\pm}2.59%$ for ethyl acetate fraction, and $20.16{\pm}1.04%$ for methanol fraction. The electron donating abilities were significantly different (p<0.05) between the solvents. The removal ability of superoxide radical was $0.0174{\pm}0.0007$ for 70% methanol extract, $0.0164{\pm}0.0007$ for methylene chloride fraction, $0.0172{\pm}0.0007$ for ethyl acetate fraction, and nothing for methanol fraction. The measurement of hydrogen peroxide decomposition was $0.0985{\pm}0.1021$ for 70% methanol extract, $0.0896{\pm}0.0893$ for methylene chloride fraction, $0.0115{\pm}0.0085$ for ethyl acetate fraction, and $0.0170{\pm}0.0180$ for methanol fraction. The Liriope platyphylla L. extracts obtained from methylene chloride showed significantly relevant results in the total polyphenol contents and electron donating ability, which was higher than the original extract.

Gamma-Radiolysis of Carbon Dioxide (IV). Effect of the Addition of Alcohols on the Gamma-Radiolysis of Gaseous Carbon Dioxide$^+$

  • 진준하;최재호;;최상업
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권1호
    • /
    • pp.55-59
    • /
    • 1988
  • The gaseous carbon dioxide has been irradiated with Co-60 gamma-radiation in the presence and absence of various alcohols, and the radiolysis products analyzed by gas chromatography. Experimental results indicate that no detectable amount of carbon monoxide is formed when pure carbon dioxide is irradiated. By adding small quantities of alcohols to carbon dioxide, however, considerable amount of carbon monoxide, ketones, alcohols and other organic products have been detected. By adding 0.1% of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-l-propanol, 2-butanol, and 2-methyl-2-propanol, G(CO) values obtained are 4.4, 4.5, 5.2, 4.4, 5.2, 5.0, 4.7 and 4.1, respectively. These high yields of carbon monoxide suggest that the oxidation reactions of carbon monoxide may be suppressed by scavenging oxygen atom with the alcohols. The main radiolytic decomposition reactions of the alcohols present in small quantity in carbon dioxide may be supposed to be the reactions with the oxygen atom produced by the radiolysis of carbon dioxide. The decomposition reactions seems to follow pseudo-first order kinetics with respect to the alcohols. The decomposition rate measured with 2-propanol is the fastest and that with 2-methyl-2-propanol the slowest. The mechanisms of the radiolytic decomposition reactions of the alcohols present in carbon dioxide are discussed on the basis of the experimental results of the present study.

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.