• 제목/요약/키워드: Methanol Oxidation

검색결과 299건 처리시간 0.032초

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

Iridoid Glycosides Isolated from Oldenlandia diffusa Inhibit LDL-Oxidation

  • Kim Dong-Hyun;Lee Hyo-Jung;Oh Young-Jun;Kim Min-Jung;Kim Sung-Hoon;Jeong Tae-Sook;Baek Nam-In
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1156-1160
    • /
    • 2005
  • An iridoid glycoside, oldenlandoside III (5) was isolated from the n-butanol fraction of methanol extracts of the aerial parts of Oldenlandia diffusa Roxb. along with six others previously characterized iridoid glycosides; geniposidic acid (1), scandoside (2), feretoside (3), 10-O-ben-zoylscandoside methyl ester (4), asperulosidic acid (6) and deacetylasperulosidic acid (7). Compounds 1, 2, and 7 inhibited LDL-oxidation, and showed $63.3{\pm}2.0,\;62.2{\pm}1.6,\;and\;63.8{\pm}1.5\%$ inhibition, respectively, at a concentration of 20 ${\mu}g/mL$.

Production of Methanol from Methane by Encapsulated Methylosinus sporium

  • Patel, Sanjay K.S.;Jeong, Jae-Hoon;Mehariya, Sanjeet;Otari, Sachin V.;Madan, Bharat;Haw, Jung Rim;Lee, Jung-Kul;Zhang, Liaoyuan;Kim, In-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권12호
    • /
    • pp.2098-2105
    • /
    • 2016
  • Massive reserves of methane ($CH_4$) remain unexplored as a feedstock for the production of liquid fuels and chemicals, mainly because of the lack of economically suitable and sustainable strategies for selective oxidation of $CH_4$ to methanol. The present study demonstrates the bioconversion of $CH_4$ to methanol mediated by Type I methanotrophs, such as Methylomicrobium album and Methylomicrobium alcaliphilum. Furthermore, immobilization of a Type II methanotroph, Methylosinus sporium, was carried out using different encapsulation methods, employing sodium-alginate (Na-alginate) and silica gel. The encapsulated cells demonstrated higher stability for methanol production. The optimal pH, temperature, and agitation rate were determined to be pH 7.0, $30^{\circ}C$, and 175 rpm, respectively, using inoculum (1.5 mg of dry cell mass/ml) and 20% of $CH_4$ as a feed. Under these conditions, maximum methanol production (3.43 and 3.73 mM) by the encapsulated cells was recorded. Even after six cycles of reuse, the Na-alginate and silica gel encapsulated cells retained 61.8% and 51.6% of their initial efficiency for methanol production, respectively, in comparison with the efficiency of 11.5% observed in the case of free cells. These results suggest that encapsulation of methanotrophs is a promising approach to improve the stability of methanol production.

휴대전원용 직접 알코올 연료전지의 특성에 관한 연구 (A Study on Direct Alcohol Fuel Cells for Portable Powers)

  • 윤성렬;차석열;오인환;홍성안;하흥용
    • 전기화학회지
    • /
    • 제4권2호
    • /
    • pp.65-69
    • /
    • 2001
  • 상온$\cdot$상압에서 운전되는 휴대전원용 연료전지 시스템에서 연료에 따른 애노드와 캐소드의 전위특성과 알코올 크로스오버의 영향 및 운전에 적합한 알코올 연료의 농도를 확인한 결과, 고분자 전해질 막을 통한 액상연료의 크로스오버는 메탄올, 에탄올, 그리고 이소프로필 알코올 모두에서 발생하였고, 고정형 연료시스템을 적용한 단위전지의 성능은 4.5 M의 메탄올이 0.23V에서 $31mW/cm^2$로 가장 우수하였다.

Antioxidant Activities of Methanol Extracts and Phenolic Compounds in Asian Pear at Different Stages of Maturity

  • Zhang, Xian;Koo, Ja-Heon;Eun, Jong-Bang
    • Food Science and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.44-50
    • /
    • 2006
  • Contents of phenolic compounds in peel, flesh, and core of three Asian pear cultivars, Hosui, Niitaka, and Chuwhangbae, were determined at different stages of maturity. Antioxidant properties of methanol extracts of peels at various fruit maturity stages were also evaluated. Total phenolic content decreased with maturity. Arbutin, chlorogenic acid, and epicatechin were major phenolic compounds in young fruits. Catechin, 4-hydroxymethyl benzoic acid, and caffeic acid were detected in peel and core of immature and mature pears. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activities of methanol extracts were 16.30 and $15.73\;{\mu}g$ in peel of immature Hosui and Chuwhangbae pears, respectively, and $11.59\;{\mu}g$ in mature Niitaka pears, which was significantly higher than those of other maturity stage in the same cultivar. Inhibitory activities on lipid oxidation of methanol extracts of three cultivars at all maturity stages were similar to that of ${\alpha}$-tocopherol.

전기화학적 증착법에 의한 직접 메탄올 연료전지(DMFC)용 메조포러스 백금-금 합금전극제조 (Synthesis of Mesoporous Pt-Au Alloy Electrode by Electrodeposition Method for Direct Methanol Fuel Cell)

  • 박은경;안재훈;김영수;김경화;백성현
    • Korean Chemical Engineering Research
    • /
    • 제46권4호
    • /
    • pp.727-731
    • /
    • 2008
  • 계면활성제(P123)를 주형물질로 사용하여 메조포러스 구조의 Pt-Au 합금박막을 전기화학적 증착법에 의해 ITO가 코팅된 유리 위에 합성하였다. 전해질은 각각 10 mM의 $H_2PtCl_6$$HAuCl_4$의 혼합용액에 일정량의 계면활성제를 첨가하여 사용하였다. TEM(Transmission Electron Microscopy) 분석을 통하여 기공구조를 확인하였고, SEM(Scanning Electron Microscopy) 분석을 통하여 합성된 박막의 표면입자의 형태를 확인하였다. 합성된 메조포러스 구조의 Pt-Au 합금박막의 입자 함량비는 EDS(Energy Dispersive X-ray Spectroscopy) 분석으로 조사하였다. 메탄올 산화에 대한 전기화학적 촉매활성과 박막의 안정성을 평가한 결과 메조포러스 구조일 때, 넓은 표면적으로 인해 산화전류밀도가 월등히 증가함을 알 수 있었으며, 순수한 Pt박막과 비교하였을 때 소량의 Au입자의 첨가로 촉매적 안정성이 향상됨을 확인하였다.

Fe(II)/과황산/전기화학적 산화 공정에 의한 2,4-D의 제거 (Removal of 2,4-D by an Fe(II)/persulfate/Electrochemical Oxidation Process)

  • 현영환;최지연;신원식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권1호
    • /
    • pp.45-53
    • /
    • 2021
  • The removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution by coupled electro-oxidation and Fe(II) activated persulfate oxidation process was investigated. The electrochemical oxidation was performed using carbon sheet electrode and persulfate using Fe(II) ion as an activator. The oxidation efficiency was investigated by varying current density (2 - 10 mA/㎠), electrolyte (Na2SO4) concentration (10 - 100 mM), persulfate concentration (5 - 20 mM), and Fe(II) concentration (10 - 20 mM). The 2,4-D removal efficiency was in the order of Fe(II) activated persulfate-assisted electrochemical oxidation (Fe(II)/PS/ECO, 91%) > persulfate-electrochemical oxidation (PS/ECO, 51%) > electro-oxidation (EO, 36%). The persulfate can be activated by electron transfer in PS/ECO system, however, the addition of Fe(II) as an activator enhanced 2,4-D degradation in the Fe(II)/PS/ECO system. The 2,4-D removal efficiency was not affected by the initial pHs (3 - 9). The presence of anions (Cl- and HCO3-) inhibited the 2,4-D removal in Fe(II)/PS/ECO system due to scavenging of sulfate radical. Scavenger experiment using tert-butyl alcohol (TBA) and methanol (MeOH) confirmed that although both sulfate (SO4•-) and hydroxyl (•OH) radicals existed in Fe(II)/PS/ECO system, hydroxyl radical (SO4•-) was the predominant radical.

丹蔘 추출물의 항산화 효과에 의한 RAW264.7 cell에서의 항염증 작용 (Anti-inflammatory effects of Salviae Miltiorrhizae Radix extract on RAW264.7 cell. via anti-oxidative activities)

  • 이세은;조수인
    • 대한본초학회지
    • /
    • 제30권4호
    • /
    • pp.89-94
    • /
    • 2015
  • Objectives : It had been reported that herbal medicines containing polyphenol and flavonoid have been shown to be associated with decreased the cause of aging and variety of disease such as reactive nitrogen species and reactive oxygen species in several recent studies. Salviae miltiorrhizae Radix, origined fromSalvia miltiorrhizaBGE., is one of popular traditional herbal medicines that is commonly used by traditional medicine practitioners. To this date, Salviae miltiorrhizae Radix has more than 2000-year history of mature application. This study was conducted to investigate whether the Salviae miltiorrhizae Radix methanol extract has an inhibitory effect association with oxidation or inflammation.Methods : Cytotoxic activity of Salviae miltiorrhizae Radix methanol extract on RAW264.7 cells was evaluated by using 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide solution. Nitric oxide production was measured using griess reagent system. Western blot analysis and measurement for changes of protein expression, nitric oxide synthase and cyclooxygenase-2, also performed.Results : The medicinal plant, Salviae miltiorrhizae Radix, does not impair the cell viability in tested concentration (25-100 μg/ml). SMR showed anti-oxiative effectsin vitroby decreasing electron donating ability, and also showed anti-inflammatory effects suppressing NO and COX-2 expressin in LPS induced RAW264.7 activation. SMR inhibited the generation of intracellular ROS production as dose dependant manner.Conclusions : These results indicate that Salviae miltiorrhizae Radix methanol extract has an anti-inflammatory activities via anti-oxidative effects, and the anti-inflammatory effect was presentedd as dose dependant manner.

고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성 (Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity)

  • 조현기;안효진
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.