• 제목/요약/키워드: Methanation Reaction

검색결과 38건 처리시간 0.023초

탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응 (Carbon-Encapsulated Ni Catalysts for CO2 Methanation)

  • 김혜정;김승보;김동현;윤재랑;김민재;전상구;이경자;이규복
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

탄소중립 메탄 생산을 위한 열화학적 이산화탄소 메탄화 공정의 단열 반응기 성능 분석 (Performance Analysis of Adiabatic Reactor in Thermochemical Carbon Dioxide Methanation Process for Carbon Neutral Methane Production)

  • 김진우;유영돈;서민혜;백종민;김수현
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.316-326
    • /
    • 2023
  • Development of carbon-neutral fuel production technologies to solve climate change issues is progressing worldwide. Among them, methane can be produced through the synthesis of hydrogen produced by renewable energy and carbon dioxide captured through a CO2 methanation reaction, and the fuel produced in this way is called synthetic methane or e-methane. The CO2 methanation reaction can be conducted via biological or thermochemical methods. In this study, a 30 Nm3/h thermochemical CO2 methanation process consisting of an isothermal reactor and an adiabatic reactor was used. The CO2 conversion rate and methane concentration according to the temperature measurement results at the center and outside of the adiabatic reactor were analyzed. The gas flow into the adiabatic reactor was found to reach equilibrium after about 1.10 seconds or more by evaluating the residence time. Furthermore, experimental and analysis results were compared to evaluate performance of the reactor.

수열 압력 제조 조건이 MoS2 촉매 특성과 직접 메탄화 반응에 미치는 영향 (Hydrothermal Pressure Effect over Preparation of MoS2: Catalyst Characterization and Direct Methanation)

  • 박정환;김성수;김진걸
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.170-180
    • /
    • 2018
  • After $MoS_2$ catalyst was prepared at 1, 30, and 70 atm, the hydrothermal pressure effect over preparation of $MoS_2$ was investigated in terms of catalyst characterization and direct methanation. Multifaceted characterization techniques such as XRD, BET, SEM, TPR, EDS, and XPS were used to analyze and investigate the effect of high pressure over the preparation of surface and bulk $MoS_2$ catalyst. Result from XRD, SEM, and BET demonstrated that $MoS_2$ was more dispersed as preparation pressure was increased, which resulted finer $MoS_2$ crystal size and higher surface area. EDS result confirmed that bulk composition was $MoS_2$ and XPS result showed that S/Mo mole ratio of surface was about 1.3. TPR showed that $MoS_2$ prepared at 30 atm possessed higher active surface sites than $MoS_2$ prepared at 1 atm and these sites could contribute to higher CO yield during methanation. Direct methanation was used to evaluate the CO conversion of the both catalysts prepared at 1 atm and 30 atm and reaction condition was at feed mole ratio of $H_2/CO=1$, GHSV=4800, 30 atm, temperature($^{\circ}C$) of 300, 350, 400, and 450. $MoS_2$ prepared at 30 atm showed more stable and higher CO conversion than $MoS_2$ prepared at 1 atm. Faster deactivation was occurred over $MoS_2$ prepared at 1 atm, which indicated that preparation pressure of $MoS_2$ catalyst was the dominant factor to improve the yield of direct methanation.

석탄 SNG 생산설비의 수성가스전환 공정 분석 (Review on the water-gas shift process for a coal SNG project)

  • 김영도;신용승
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.75.1-75.1
    • /
    • 2011
  • Coal gasification is considered as one of the most prospective technologies in energy field since it can be utilized for various products such as electricity, SNG (Synthetic Natural Gas or Substitute Natural Gas) and other chemical products. Among those products from coal gasification, SNG is emerging as a very lucrative product due to the rising prices of oil and natural gas, especially in Asian countries. The process of SNG production is very similar to the conventional IGCC in that the overall process is highly dependent on the type of gasifier and coal rank. However, there are some differences between SNG production and IGCC, which is that SNG plant requires higher oxygen purity from oxygen plant and more complex gas cleanup processes including water-gas shift reaction and methanation. Water-gas shift reaction is one of the main process in SNG plant because it is a starting point for the latter gas cleanup processes. For the methanation process, syngas is required to have a composition of $H_2$/CO = 3. This study reviewed various considerations for water-gas shift process in a conceptual design on an early stage like a feasibility study for a real project. The factors that affect the design parameters of water-gas shift reaction include the coal properties, the type of gasifier, the overall thermal efficiency of the plant and so on. Water-gas shift reaction is a relatively proven technology compared to the other processes in SNG plant so that it can reduce technological variability when designing a SNG project.

  • PDF

Y형 제올라이트 담지 니켈촉매상에서 이산화탄소의 메탄화반응 (A Study on the Methanation of Carbon Dioxide over Ni/Y-type Zeolites)

  • 이관용;김형욱;김건중;안화승
    • 공업화학
    • /
    • 제4권2호
    • /
    • pp.365-372
    • /
    • 1993
  • 양이온이 교환된 Y형 제올라이트에 담지된 니켈촉매상에서 이산화탄소의 메탄화반응을 상압과 $200{\sim}550^{\circ}C$의 온도범위, 수소와 이산화탄소의 몰비가 4인 조건에서 수행하였다. Y형 제올라이트에 이온교환된 양이온에 따라 이산화탄소와 니켈간의 결합력의 차이를 보였으며, TPD(Temperature-programmed desorption) 결과 Ni/NaY>Ni/MgY>Ni/HY 순으로 결합력이 작아지는 것으로 나타났고, TPSR(Temperature-programmed surface reaction)의 결과로부터 이산화탄소와 니켈의 결합력이 강할 때 반응의 활성이 좋음을 알 수 있었다. 니켈의 환원온도가 높을수록 반응활성이 증가하는 것으로 보아 이산화탄소의 메탄화반응은 환원된 니켈금속입자가 커질수록 유리한 것으로 나타났고, 니켈의 담지량이 3.3wt%일 때 최대의 활성을 나타내었다. 반응온도 조건의 전범위에서 일산화탄소가 부생성물로 생성되었으며, 반응물과 촉매의 접촉시간이 길어질수록 생성물질중의 일산화탄소가 감소하는 것으로 미루어 이산화탄소가 일산화탄소를 경유하여 메탄으로 전환됨을 알 수 있었다. $410{\sim}450^{\circ}C$의 온도범위에서 메탄의 생성속도는 이산화탄소의 분압에 대하여 3.3에서 -0.5 지수승에 비례하고 수소의 분압에 대하여 1.4에서 3.6 지수승에 비례하며, 이산화탄소와 수소가 경쟁적으로 니켈에 흡착함을 알 수 있었다.

  • PDF

Ni 촉매 상에서 Power to Gas (P2G) 기술의 CO2 메탄화 반응에 관한 연구 (A Study on the CO2 Methanation in Power to Gas (P2G) over Ni-Catalysts)

  • 염규인;서명원;백영순
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.14-20
    • /
    • 2019
  • The power to gas (P2G) is one of the energy storage technologies that can increase the storage period and storage capacity compared to the existing battery type. One of P2G technologies produces hydrogen by decomposing water from renewable energy (electricity) and the other produces $CH_4$ by reacting hydrogen with $CO_2$. The objective of this study is the reaction of $CO_2$ methanation which synthesized methane by reacting carbon dioxide and hydrogen. The effect of $CO_2$ conversion and $CH_4$ selectivity on reaction temperature, pressure, and methane contents over 40% Ni catalyst was mainly investigated throughout this study. As a result, the activity of this catalyst appeared to be the highest in $CH_4$ yield at around $400^{\circ}C$ and the selectivity of $CH_4$ increased with increasing reaction pressure. The methane content was not significantly influenced below 3% of all componets. As the space velocity increases from 10,000 to 30,000/hr, the $CO_2$ conversion rate tends to decrease.

메탄화 반응을 위한 중형 기공성 실리카 물질에 담지된 니켈 촉매의 제조와 특성 분석 (Preparation and Characterization of Ni Catalyst Supported on Mesoporous Silica for Methanation)

  • 이종협;김우영;강미영;조원준
    • 한국가스학회지
    • /
    • 제13권5호
    • /
    • pp.26-32
    • /
    • 2009
  • Ni 금속을 바탕으로 중형 기공성 실리카와 상용 실리카를 담체로 사용하여 메탄화 반응용 촉매를 제조, 특성 비교를 수행하였다. TPR, XRD 분석 결과, 중형 기공성 실리카에 담지된 Ni촉매는 상용 실리카에 담지된 Ni 촉매에 비하여 보다 작은 크기로 Ni 금속이 분산되었으며 보다 강한 금속-담체 상호 결합력을 가짐을 확인하였다. 이와 같은 특성으로 인하여 중형 기공성 실리카를 사용한 촉매와 상용 실리카를 사용한 촉매의 수율은 각각 65%, 58%로 중형 기공성 실리카를 사용한 촉매가 메탄화 반응에서 보다 높은 활성을 보였으며, 반응 후에 회수된 촉매의 특성 분석 결과로부터 중형 기공성 실리카를 사용한 촉매가 구조의 붕괴, 금속 소결 현상으로 인하여 촉매의 비활성화가 진행된 상용 실리카 촉매에 비하여 상대적으로 안정하다는 것을 확인하였다.

  • PDF

등온반응기와 단열반응기 조합으로 구성된 0.25 MW급 메탄합성 파일롯 공정 운전특성 (Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor)

  • 김수현;유영돈;강석환;류재홍;김진호;김문현;고동준;이현정;김광준;김형택
    • 청정기술
    • /
    • 제19권2호
    • /
    • pp.156-164
    • /
    • 2013
  • 본 연구에서는 등온반응기와 단열반응기로 구성된 0.25 MW 메탄합성 파일롯 공정 실험을 통한 운전 특성을 분석하였다. 등온반응기는 메탄합성 반응을 통해 발생하는 열을 포화수의 유량과 압력을 통해 강제적으로 제어할 수 있는 반응기로 등온반응기와 단열반응기를 조합할 경우 기존 단열반응기만으로 구성된 메탄합성 공정에 비해 반응기 개수를 줄일 수 있다. 또한 합성가스 재순환이 불필요하기 때문에 단열반응기 조합으로 구성된 메탄합성 공정에서 비용의 약 15~20%를 차지하는 재순환 압축기를 제거할 수 있다. 등온반응기로 유입되는 합성가스의 $H_2$/CO 비가 3보다 낮은 경우에는 튜브에 충진된 촉매에 탄소 침적 현상이 일어나 반응기의 차압이 증가하였으며, $H_2$/CO 비가 3으로 공급되는 경우에는 탄소 침적 현상이 일어나지 않고 메탄합성 반응이 안정적으로 유지되어 CO 전환율 99% 이상, $CH_4$선택도 97% 이상, $CH_4$생산성 최대 $695ml/h{\cdot}-cat$를 얻을 수 있었다.

고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향 (Catalytic Performance for the Production of CH4-rich Synthetic Natural Gas (SNG) on the Commercial Catalyst; Influence of Operating Conditions)

  • 김진호;류재홍;강석환;유영돈;김준우;고동준;정문;이종민
    • 청정기술
    • /
    • 제24권2호
    • /
    • pp.99-104
    • /
    • 2018
  • 본 연구에서는 합성천연가스(synthetic natural gas, SNG)를 생산하기 위한 공정 개발을 위해 RIST-IAE에서 제안한 공정의 4차 반응기에 대하여 합성가스($H_2/CO_2$)를 이용하여 메탄화 반응을 수행하였다. 실험의 조건은 온도, 압력, 공간속도 등을 변화시켰으며, 이때 $CO_2$ 전환율, $CH_4$ 선택도, 반응 후 $H_2$의 농도에 대해 고찰하였다. 그 결과 $CO_2$ 메탄화반응에 의한 $CH_4$의 선택도는 공간속도가 낮을수록, 그리고 압력이 높을수록 증가하였다. 한편, 온도의 경우에는 $320^{\circ}C$에서 최대 값을 보였다. 이러한 결과로부터 SNG 공정에 적합한 4차반응기의 최적 조건을 얻을 수 있었다.

수소가스화기에서 석탄의 메탄화 반응 특성 (Characteristics of Coal Methanation in a Hydrogasifier)

  • 이시훈;윤상준;최영찬;김재호;이재구
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.631-635
    • /
    • 2006
  • 석탄의 수소가스화 반응에 따른 합성천연가스(substitute natural gas, SNG) 제조 특성을 고찰하기 위하여 연속식 lab-scale 분류층 수소가스화기(지름 : 0.025 m, 높이 : 1.0 m)를 이용하였다. 수소가스화 시스템은 고압 가스 주입부, 석탄 주입시스템, 분류층 수소가스화 반응기, 미반응물 분리장치로 이루어졌다. 실험은 반응온도 $600{\sim}800^{\circ}C$, 수소/석탄비 0.2~0.4, 석탄주입량 0.8~2.5 g/min의 범위에서 수행되었다. 6종류의 석탄시료를 사용한 실험결과로부터 반응온도가 증가하면 메탄화에 의한 탄소 전환율은 증가하였지만 증가하는 경향은 석탄의 종류에 따라서 각각 다르게 나타났다. 또한 수소/석탄비가 증가할수록 탄소 전환율이 증가하는 반면, 메탄농도는 감소함을 보였다. 석탄 시료 중에 포함된 탄소함량이 증가할수록 탄소 전환율이 증가하였으며, 석탄중 휘발분 함량이 35 wt%일 때 최대의 탄소전환율을 얻을 수 있었다.