DOI QR코드

DOI QR Code

Operating Characteristics of a 0.25 MW Methanation Pilot Plant with Isothermal Reactor and Adiabatic Reactor

등온반응기와 단열반응기 조합으로 구성된 0.25 MW급 메탄합성 파일롯 공정 운전특성

  • Kim, Suhyun (Plant Engineering Division, Institute for Advance Engineering) ;
  • Yoo, Youngdon (Plant Engineering Division, Institute for Advance Engineering) ;
  • Kang, Sukhwan (Plant Engineering Division, Institute for Advance Engineering) ;
  • Ryu, Jaehong (Plant Engineering Division, Institute for Advance Engineering) ;
  • Kim, Jinho (Plant Engineering Division, Institute for Advance Engineering) ;
  • Kim, Munhyun (Plant Engineering Division, Institute for Advance Engineering) ;
  • Koh, Dongjun (Coal Chemical Research Group, Research Institute of Industrial Science & Technology) ;
  • Lee, Hyunjung (Gas & Coal Chemical Business Department, POSCO) ;
  • Kim, Gwangjun (Gas & Coal Chemical Business Department, POSCO) ;
  • Kim, Hyungtaek (Energy System Department, Ajou University)
  • 김수현 (고등기술연구원 플랜트엔지니어링본부) ;
  • 유영돈 (고등기술연구원 플랜트엔지니어링본부) ;
  • 강석환 (고등기술연구원 플랜트엔지니어링본부) ;
  • 류재홍 (고등기술연구원 플랜트엔지니어링본부) ;
  • 김진호 (고등기술연구원 플랜트엔지니어링본부) ;
  • 김문현 (고등기술연구원 플랜트엔지니어링본부) ;
  • 고동준 (포항산업과학연구원 석탄화학연구단) ;
  • 이현정 (포스코(주) 가스석탄화학사업실) ;
  • 김광준 (포스코(주) 가스석탄화학사업실) ;
  • 김형택 (아주대학교 에너지시스템학부)
  • Received : 2013.04.04
  • Accepted : 2013.05.14
  • Published : 2013.06.28

Abstract

In this study, we analyzed the operational characteristics of a 0.25 MW methanation pilot plant. Isothermal reactor controled the heat released from methanation reaction by saturated water in shell side. Methanation process consisting of isothermal reactor and adiabatic reactor had advantages with no recycle compressor and more less reactors compared with methanation process with only adiabatic reactors. In case that $H_2$/CO ratio of syngas was under 3, carbon deposition occurred on catalyst in tube side of isothermal reactor and the pressure of reactors increased. In case that $H_2$/CO ratio was maintained around 3, no carbon deposition on catalyst in tube side of isothermal reactor was found by monitoring the differential pressure of reactors and by measuring the differential pressure of several of tubes filled with catalyst before and after operating. It was shown that CO conversion and $CH_4$selectivity were over 99, 97%, respectively, and the maximum $CH_4$productivity was $695ml/h{\cdot}g-cat$.

본 연구에서는 등온반응기와 단열반응기로 구성된 0.25 MW 메탄합성 파일롯 공정 실험을 통한 운전 특성을 분석하였다. 등온반응기는 메탄합성 반응을 통해 발생하는 열을 포화수의 유량과 압력을 통해 강제적으로 제어할 수 있는 반응기로 등온반응기와 단열반응기를 조합할 경우 기존 단열반응기만으로 구성된 메탄합성 공정에 비해 반응기 개수를 줄일 수 있다. 또한 합성가스 재순환이 불필요하기 때문에 단열반응기 조합으로 구성된 메탄합성 공정에서 비용의 약 15~20%를 차지하는 재순환 압축기를 제거할 수 있다. 등온반응기로 유입되는 합성가스의 $H_2$/CO 비가 3보다 낮은 경우에는 튜브에 충진된 촉매에 탄소 침적 현상이 일어나 반응기의 차압이 증가하였으며, $H_2$/CO 비가 3으로 공급되는 경우에는 탄소 침적 현상이 일어나지 않고 메탄합성 반응이 안정적으로 유지되어 CO 전환율 99% 이상, $CH_4$선택도 97% 이상, $CH_4$생산성 최대 $695ml/h{\cdot}-cat$를 얻을 수 있었다.

Keywords

References

  1. http://www.lgeri.com/industry/chemical/article.asp?grouping=01030300&seq=207
  2. http://www.nicholas.duke.edu/ccpp/ccpp_pdfs/synthetic.gas.pdf
  3. http://www.chinagasholdings.com.hk/siteen/aspx/News_Infor.aspx?id=677
  4. http://www.lgeri.com/industry/chemical/article.asp?grouping=01030300&seq=241
  5. Youngdon, Yoo, Suhyun, Kim, Hyojun, Lim, and Changdae, Byun, "SNG Technology Trend and Outlook Using Coal Gasification," Korea Gas Union, 37-50 (2010).
  6. Anne-Gaelle Collot, Clean Fuels from Coal, IEA Clean Coal Centre, London, 2004, pp. 41-42.
  7. R. R. Lessard, and R. A. Reitz, "Catalyst Coal Gasification : An Emerging Technology for SNG," Energy Technol., 9, 740-751 (1982).
  8. A. E. Cover, D. A. Hubbard, S. K. Jain, K. V. Shah, P. B. Koneru, and E. W. Wong, "Review of Selected Shfir and Methanation Process for SNG production," Kellogg Rust Synfuels, Inc, Final Report, 1985.
  9. W. L. Lom and A. F. Willaims, Substitute Natural Gas : Manufacture and Properties, John Wiley & Sons, New York, 1976.
  10. Suhyun Kim, Youngdon Yoo, Jaehong Ryu, Changdae Byun, Hyojun Lim, and Hyngtaek Kim., "Methanation with Variation of Temperature and Space Velocity on Ni Catalysts," New & Renewable Energy, 6(4), 30-40 (2010).
  11. Suhyun Kim, "Analysis of Methanation Process Consisting of Adabatic Reactors in Coal-to-SNG Plant," Ph.D. Dissertation, Ajou University, Suwon, 2011.
  12. http://www.topsoe.com/business_areas/gasification_based/Processes/Substitute_Natural_Gas.aspx
  13. Jin-Ho Kim, Suk-Hwan Kang, Jae-Hong Ryu, Sun-Ki Lee, Su-Hyun Kim, Mun-Hyun Kim, Do-Yeon Lee, Young-don Yoo, Chang-dae Byun, and Hyo-jun Lim, "Operating Characteristics of 1 $Nm^3/h$ Scale Synthetic Natural Gas(SNG) Synthetic Systems," Korean Chem. Eng. Res., 49(4), 491-497 (2011). https://doi.org/10.9713/kcer.2011.49.4.491
  14. Shaik A. Qader, Natural Gas Substitutes from Coal and Oil, Elsevier, Amsterdam, 1985, pp. 377.

Cited by

  1. Catalytic Performance for the Production of Synthetic Natural Gas (SNG) on the Commercial Catalyst in Low Hydrogen Concentration; Influence of Steam and CO2 vol.20, pp.1, 2014, https://doi.org/10.7464/ksct.2014.20.1.057
  2. 고농도 메탄의 합성천연가스 생산을 위한 상업용 촉매의 반응특성; 운전조건에 대한 영향 vol.24, pp.2, 2013, https://doi.org/10.7464/ksct.2018.24.2.099
  3. 파일럿 규모의 공정에서 CO2가 함유된 합성가스로부터 합성천연가스(SNG) 생산 vol.57, pp.3, 2013, https://doi.org/10.9713/kcer.2019.57.3.420