• Title/Summary/Keyword: Meteorological observatory

Search Result 116, Processing Time 0.025 seconds

A Study on Highway Capacity Variation According to Snowfall Intensity (강설에 따른 고속도로 용량 변화에 관한 연구)

  • Son, Young Tae;Lee, Sang Hwa;Im, Ji Hee
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • Under the consumption of bad weather situation affects traffic flows, the study scope is focused on highway capacity and speed variations among other highway traffic flow characteristic changes according to snowfall density. Thus, this study carried out through the data collection and statistical analysis by focusing on capacity and speed changes. Traffic volume, speed and density were selected as factors to explain the property change of a traffic flow for analysis, and 7 basic sections such as 3 highways in Gyeonggi-do and 4 highways near the meteorological observatory were selected as survey points for data collection. Snowfall levels were classified into 3 steps(Light, Medium, Heavy Snow) to analyze the capacity change by snowfall levels. As a result of analysis, the change of capacity depending on snowfall levels decreased 13.2% in case of light snow compared to a good weather, 18.6% in case of medium snow and 32.0% in case of heavy snow, so the capacity reduction rate increased as the snowfall level increased. The worsening weather appeared to have a very big possibility to act as a factor to reduce the operational efficiency of a road, so a road design and operation method considering this should be presented in the future.

Restoration, Prediction and Noise Analysis of Geomagnetic Time-series Data (시계열 지자기 측정 자료의 복원, 예측 및 잡음 분석 연구)

  • Ji, Yoon-Soo;Oh, Seok-Hoon;Suh, Baek-Soo;Lee, Duk-Kee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.613-628
    • /
    • 2011
  • Restoration, prediction and noise analysis of geomagnetic data measured in the Korean Peninsula were performed. Restoration methods based on an optimized principal component analysis (PCA) and the geostatistical kriging approach were proposed, and its effectiveness was also interpreted. The PCA-based method seemed to be effective to restore the periodical signals and the geostatistical approach was stable to fill the gaps of measurements. To analyze the noise level for each observatory, the geomagnetic time-series was plotted by scattergram which reflects the spatial variation, using data observed during same period. The scattergram showed that the observation made at Cheongyang seemed to have better quality in spatial continuity and stability, and the restoration result was also better than that of Icheon site. For the restoration, both of the methods, geostatistical and optimizaed PCA, showed stable result when the missing of observation was within 20 points. However, in case of more missing observations than 20 points and prediction problem, the optimized PCA seemed to be closer to the real observation considering the frequency-domain characteristics. The prediction using the optimized PCA seems to be plausible for one day of period for interpretation.

Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8 (일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Chan, P.W.
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.681-691
    • /
    • 2016
  • Using various satellite measurements in UV, visible and IR, diverse algorithms to retrieve aerosol information have been developed and operated to date. Advanced Himawari Imager (AHI) onboard the Himawari 8 weather satellite was launched in 2014 and has 16 channels from visible to Thermal InfRared (TIR) in high temporal and spatial resolution. Using AHI, it is very valuable to retrieve aerosol optical properties over dark surface to demonstrate its capability. To retrieve aerosol optical properties using visible and Near InfRared (NIR) region, surface signal is very important to be removed which can be estimated using minimum reflectivity method. The estimated surface reflectance is then used to retrieve the aerosol optical properties through the inversion process. In this study, we retrieve the aerosol optical properties over dark surface, but not over bright surface such as clouds, desert and so on. Therefore, the bright surface was detected and masked using various infrared channels of AHI and spatial heterogeneity, Brightness Temperature Difference (BTD), etc. The retrieval result shows the correlation coefficient of 0.7 against AERONET, and the within the Expected Error (EE) of 49%. It is accurately retrieved even for low Aerosol Optical Depth (AOD). However, AOD tends to be underestimated over the Beijing Hefei area, where the surface reflectance using the minimum reflectance method is overestimated than the actual surface reflectance.

A Study on Wind Distribution of Mountain Area by Spot Measurements and Simulations (실측 및 해석을 통한 단순 산악지형의 바람장 분포 연구)

  • Kimg, Eung-Sik;Lee, Byung-Doo;Cho, Min-Tae;Kim, Jang-Whan
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.13-21
    • /
    • 2014
  • Forest fire has a number of variables and since the effects of wind fields are bigger than any other variables, it is essential to know wind direction and velocity for the forest fire extinguishing techniques and the prediction of fire spread. With regards to the local area that has a high chance of forest fire, the data from meteorological observatory in the area is used for the estimation of wind velocity. It is relatively easy to obtain automatic weather station (AWS) data which are available for the whole nation. There is a chance that the data from the weather station may be different with the actual data at the mountain areas. In this study simply shaped hills (Sae-byeol hill of Jeju Island and port Ma-geum in An-myeon Island in the sea side) were selected as the experimental locations to minimize the distortion of the wind field by the adjacent geographic features. Spot measurements and analysis of computational fluid dynamics (CFD) for the given geographic features were conducted to examine and compare their consistency. As a conclusion It is possible to predict wind patterns in these simple locations.

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.

Changes in the Reproductive Population Size of the Huanren Brown Frog (Rana huanrenensis) and Wonsan Salamander (Hynobius leechii), which Breeding in Mountain Valleys, According to Climate Change (기후변화에 따른 산간계곡에 번식하는 계곡산개구리 (Rana huanrenensis)와 도롱뇽 (Hynobius leechii) 번식개체군 크기의 변동)

  • Choi, Woo-Jin;Park, Daesik;Kim, Ja-Kyeong;Lee, Jung-Hyun;Kim, Dae-In;Kim, Il-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.582-590
    • /
    • 2018
  • Although there are many studies of the effect of climate change on the breeding phenology and community diversity of amphibians, the studies of variations in reproductive population size of individual species according to climate change are still lacking. We examined the effect of climate change on the reproductive population size of Rana huanrenensis and Hynobius leechii, which bred in mountain valleys, by surveying the reproductive population of the two species between 2005 and 2012 and analyzing the correlation between the variation of the outdoor population and the surrounding climate change factors, obtained from a meteorological observatory located at 5.6 km from the study site. The size of the reproductive population of the two species commonly fluctuated with aan pproximately 3.5-year cycle. That of H. leechii, in particular, decreased significantly over eight years. The air temperature tended to more closely relate with the reproductive population size of R. huanrenensis as was the case of the precipitation with that of H. leechii. The yearly mean highest temperature and spring mean temperature variation consistently decreased over the eight years, and the latter was related with the significantly decreased size of H. leechii reproductive population. These results showed that recent climate change directly could affect the reproductive population size of amphibians, particularly H. leechii, which breeds in mountain valleys.

Understanding Impact of the Volcanic Eruption of Nishinoshima, Japan on Air Quality in the South Korean Peninsula (일본 니시노시마 화산 분화에 의한 한반도 남부 대기질 영향 분석)

  • Cheolwoo Chang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.196-209
    • /
    • 2023
  • The Nishinoshima volcano, located 940 km south of Tokyo, experienced an eruption from June to August 2020. The volcanic gas and ash from the eruption of Nishinoshima that occurred at the end of July 2020 was reported to have the potential to affect the Korean Peninsula. In this study, we used Ash3D, a numerical simulation program for volcanic ash dispersion, to investigate the eruption that occurred at 0:00 local time on July 28, 2020, with a volcanic explosivity index of three. The results showed that the volcanic ash cloud reached Okinawa on the morning of July 30, carried by an east wind. It then moved northward and reached Jeju Island on August 1, eventually circulating in a clockwise direction and reaching southern part of the Korean Peninsula on August 2. The concentration of Particulate Matter 10 (PM10), measured at the Jeju Gosan Meteorological Observatory in Jeju Island, increase from August 1. A similar increase in PM10 concentration was observed at the Gudeok Mountain Weather Station in Busan from August 2. These findings suggested that eruption of the Nishinoshima volcano had an impact on the fine dust concentrations at Jeju Island and southern part of the Korean Peninsula.

Short-term Variability of Carbon Dioxide within and across the Korean Peninsula: Case Study during 1995-1997 (이산화탄소의 단주기적 농도변화 특성)

  • Song, Ki-Bum;Youn, Yong-Hoon;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.623-634
    • /
    • 2000
  • This study was conducted to analyze the patterns associated with the short-term variability of CO$_2$ concentrations over 24-h scale within and across the Korean Peninsula. In the course of our study, we compared the data sets obtained from Moo-Ahn (MAN) station located in the far western coastal area of Korea with those determined from major background observatory stations around the world from the periods of Aug. 1995 to Dec. 1997. The mean CO$_2$ concentration of the MAN area for the whole study periods, when computed using the daily mean values, was found out to be 374.5${\pm}$6.6 ppm (N=884); seasonal mean values were found out to be 378${\pm}$5.2 (spring: N=181), 372${\pm}$10.2 (summer: N =210), 372${\pm}$7.2 (fall: N=243), and 376${\pm}$5.4 ppm (winter: N=206). When the data from MAN was compared with those of major background stations, the effects of both daily and seasonal components appear to vary distinctively across different stations. Those effects are expected to reflect the mixed effects of various factors which include: seasonal pollution patterns, weather conditions, vegetation, and so forth. Based upon this comparative analysis, we suspect that the MAN area is under the strong influence of anthropogenic source processes relative to all the other stations under consideration. If that is not the case, the existence of enhanced CO$_2$ level may be rather ubiquitous phenomena in Korea. More detailed inspection of CO$_2$ behavior from various respects is strongly desired in the future.

  • PDF

Prediction of Forest Fire Danger Rating over the Korean Peninsula with the Digital Forecast Data and Daily Weather Index (DWI) Model (디지털예보자료와 Daily Weather Index (DWI) 모델을 적용한 한반도의 산불발생위험 예측)

  • Won, Myoung-Soo;Lee, Myung-Bo;Lee, Woo-Kyun;Yoon, Suk-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Digital Forecast of the Korea Meteorological Administration (KMA) represents 5 km gridded weather forecast over the Korean Peninsula and the surrounding oceanic regions in Korean territory. Digital Forecast provides 12 weather forecast elements such as three-hour interval temperature, sky condition, wind direction, wind speed, relative humidity, wave height, probability of precipitation, 12 hour accumulated rain and snow, as well as daily minimum and maximum temperatures. These forecast elements are updated every three-hour for the next 48 hours regularly. The objective of this study was to construct Forest Fire Danger Rating Systems on the Korean Peninsula (FFDRS_KORP) based on the daily weather index (DWI) and to improve the accuracy using the digital forecast data. We produced the thematic maps of temperature, humidity, and wind speed over the Korean Peninsula to analyze DWI. To calculate DWI of the Korean Peninsula it was applied forest fire occurrence probability model by logistic regression analysis, i.e. $[1+{\exp}\{-(2.494+(0.004{\times}T_{max})-(0.008{\times}EF))\}]^{-1}$. The result of verification test among the real-time observatory data, digital forecast and RDAPS data showed that predicting values of the digital forecast advanced more than those of RDAPS data. The results of the comparison with the average forest fire danger rating index (sampled at 233 administrative districts) and those with the digital weather showed higher relative accuracy than those with the RDAPS data. The coefficient of determination of forest fire danger rating was shown as $R^2$=0.854. There was a difference of 0.5 between the national mean fire danger rating index (70) with the application of the real-time observatory data and that with the digital forecast (70.5).

The Statistical Identification of Airmass Characteristics during the Manna Loa Observatory Photochemistry Experiment (Mauna Loa (Hawaii)에서 관측된 대기질 특성의 통계적 분석)

  • Lee, Gang-Woong;Barry J. Huebert
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.E
    • /
    • pp.332-342
    • /
    • 1994
  • Hierarchical cluster and factor analyses were used to identify various influences on free tropospheric air samples at Mauna Loa Observatory in Hawaii during MLOPEX. The cluster analysis separated thirteen chemical and meteorological variables into three characteristic groups (1)clean air, (2)anthropogenically influenced air, (3)marine and volcanic influenced air. The cluster analysis results compared well with those of factor analysis. Six independent components were identified in factor analysis. We have related these components to (1)volcano influenced air, (2)stratosphere-like air, (3)boundary-layer air with recent anthropogenic influence, (4)photochemical haze, (5)marine boundary- layer air, and (6)modified marine tropospheric air. Excluding local influence, we could calculate the nighttime free tropospheric values for $O_3$(41$\pm$10 ppbv), HN $O_3$(94$\pm$45 pptv), N $O_3$$^{[-10]}$ (16$\pm$10 ppbv), S $O_4$$^{[-10]}$ (60$\pm$0 pptv), N $H_4$$^{+}$(71$\pm$6 pptv), N $a^{+}$(5$\pm$1 pptv), PAN(13$\pm$9 pptv), MeN $O_3$(3.5$\pm$1.5 pptv), 2-butyl N $O_3$(0.6$\pm$0.1 pptv), $H_2O$$_2$(1015$\pm$44 pptv), $C_2$C $l_4$(3.3$\pm$0.1 pptv), condensation nuclei(249$\pm$13c $m^{-3}$), and dew point(-8.5$\pm$5.3$^{\circ}C$) during this experiment..

  • PDF