• 제목/요약/키워드: Meteorological Processes

검색결과 179건 처리시간 0.027초

기상청 국가태풍센터의 태풍 베스트트랙 생산체계 소개 (Algorithms for Determining Korea Meteorological Administration (KMA)'s Official Typhoon Best Tracks in the National Typhoon Center)

  • 김진연;황승언;김성수;오임용;함동주
    • 대기
    • /
    • 제32권4호
    • /
    • pp.381-394
    • /
    • 2022
  • The Korea Meteorological Administration (KMA) National Typhoon Center has been officially releasing reanalyzed best tracks for the previous year's northwest Pacific typhoons since 2015. However, while most typhoon researchers are aware of the data released by other institutions, such as the Joint Typhoon Warning Center (JTWC) and the Regional Specialized Meteorological Center (RSMC) Tokyo, they are often unfamiliar with the KMA products. In this technical note, we describe the best track data released by KMA, and the algorithms that are used to generate it. We hope that this will increase the usefulness of the data to typhoon researchers, and help raise awareness of the product. The best track reanalysis process is initiated when the necessary database of observations-which includes satellite, synoptic, ocean, and radar observations-has become complete for the required year. Three categories of best track information-position (track), intensity (maximum sustained winds and central pressure), and size (radii of high-wind areas)-are estimated based on scientific processes. These estimates are then examined by typhoon forecasters and other internal and external experts, and issued as an official product when final approval has been given.

JKMS 의 SCI 등재를 위한 필수요건 및 제언 (Essential Factors and Suggestions for Making the JKMS an SCI Journal)

  • 박선기
    • 대기
    • /
    • 제16권4호
    • /
    • pp.387-393
    • /
    • 2006
  • In this study, journal selection processes of the Science Citation Index (SCI) and the SCOPUS are investigated aiming at making the Journal of the Korean Meteorological Society (JKMS) an SCI journal. In addition, some characteristic features of the SCI journals in the field of atmospheric sciences published in Asian countries are examined. Some domestic journals in the related disciplines that are recently listed in the SCI and SCOPUS are also analyzed in terms of strategic approaches. Results of this study may provide fundamental strategic information in pursuing the JKMS to be listed in the SCI in the near future.

METRI AGCM의 복사 모수화 개선에 따른 겨울철 기후모의의 특징적 변화 (Changes in the Characteristics of Wintertime Climatology Simulation for METRI AGCM Using the Improved Radiation Parameterization)

  • 임한철;변영화;박수희;권원태
    • 대기
    • /
    • 제19권2호
    • /
    • pp.127-143
    • /
    • 2009
  • This study investigates characteristics of wintertime simulation conducted by METRI AGCM utilizing new radiation parameterization scheme. New radiation scheme is based on the method of Chou et al., and is utilized in the METRI AGCM recently. In order to analyze characteristics of seasonal simulation in boreal winter, hindcast dataset from 1979 to 2005 is produced in two experiments - control run (CTRL) and new model's run (RADI). Also, changes in performance skill and predictability due to implementation of new radiation scheme are examined. In the wintertime simulation, the RADI experiment tends to reduce warm bias in the upper troposphere probably due to intensification of longwave radiative cooling over the whole troposphere. The radiative cooling effect is related to weakening of longitudinal temperature gradient, leading to weaker tropospheric jet in the upper troposphere. In addition, changes in vertical thermodynamic structure have an influence on reduction of tropical precipitation. Moreover, the RADI case is less sensitive to variation of tropical sea surface temperature than the CTRL case, even though the RADI case simulates the mean climate pattern well. It implies that the RADI run does not have significant improvement in seasonal prediction point of view.

운고계 후방산란 강도와 기상변수 자료를 이용한 지표면 PM2.5 농도 계산 (Calculations of Surface PM2.5 Concentrations Using Data from Ceilometer Backscatters and Meteorological Variables)

  • 정희정;엄준식
    • 한국환경과학회지
    • /
    • 제31권1호
    • /
    • pp.61-76
    • /
    • 2022
  • In this study, surface particulate matter (PM2.5) concentrations were calculated based on empirical equations using measurements of ceilometer backscatter intensities and meteorological variables taken over 19 months. To quantify the importance of meteorological conditions on the calculations of surface PM2.5 concentrations, eight different meteorological conditions were considered. For each meteorological condition, the optimal upper limit height for an integration of ceilometer backscatter intensity and coefficients for the empirical equations were determined using cross-validation processes with and without considering meteorological variables. The results showed that the optimal upper limit heights and coefficients depended heavily on the meteorological conditions, which, in turn, exhibited extensive impacts on the estimated surface PM2.5 concentrations. A comparison with the measurements of surface PM2.5 concentrations showed that the calculated surface PM2.5 concentrations exhibited better results (i.e., higher correlation coefficient and lower root mean square error) when considering meteorological variables for all eight meteorological conditions. Furthermore, applying optimal upper limit heights for different weather conditions revealed better results compared with a constant upper limit height (e.g., 150 m) that was used in previous studies. The impacts of vertical distributions of ceilometer backscatter intensities on the calculations of surface PM2.5 concentrations were also examined.

기상 조건에 따른 도시 캐노피 모형의 성능 비교 (Performance Comparison of an Urban Canopy Model under Different Meteorological Conditions)

  • 유영희;백종진;이상현
    • 대기
    • /
    • 제22권4호
    • /
    • pp.429-436
    • /
    • 2012
  • The performances of the Seoul National University Urban Canopy Model (SNUUCM) under different meteorological conditions (clear, cloudy, and rainy conditions) in summertime are compared using observation dataset obtained at an urban site. The daily-averaged net radiation, sensible heat flux, and storage heat flux are largest in clear days and smallest in rainy days, but the daily-averaged latent heat flux is similar among clear, cloudy, and rainy days. That is, the ratio of latent heat flux to net radiation increases in order of clear, cloudy, and rainy conditions. In general, the performance of the SNUUCM is better in clear days than in cloudy or rainy days. However, the performance in simulating sensible heat flux in clear days is as poor as that in rainy days. For all the meteorological conditions, the performance in simulating latent heat flux is worst among the performances in simulating net radiation, sensible heat flux, and latent heat flux. The normalized mean error for latent heat flux is largest in rainy days in which the relative importance of latent heat flux in the surface energy balance becomes greatest among the three conditions. This study suggests that improvements to the parameterization of processes that are related to latent heat flux are particularly needed.

Regional Scale Satellite Data Sets for Agricultural, Hydrological and Environmental Applications in Zambia

  • Ngoma, Solomon
    • 한국농림기상학회:학술대회논문집
    • /
    • 한국농림기상학회 2001년도 춘계 학술발표논문집
    • /
    • pp.43-48
    • /
    • 2001
  • Many applications in the areas of agricultural, hydrological and environmental resource management require data over very large areas and with a high imaging frequency - monitoring crop growth, water stress, seasonal wetland flooding and natural vegetation development. This precludes the use of fine resolution data (Landsat, Spot) on the grounds of cost, accessibility and low imaging frequency. Meteorological satellites have the potential to fill this need, given their very wide spatial coverage, and high repeat imaging. The Remote Sensing Unit (RSU) at the Zambia Meteorological Department routinely receives, processes and archives imagery from both Meteosat and NOAA AVHRR satellites. Here I wish to present some examples of applications of these data sets that arise from the RSU work - relationships between rainfall and vegetation development as assessed by satellite, derived information and seasonal patterns of flooding in the Barotse floodplain and the Kafue flats. I also wish to outline ways in which a more widespread use of this data by the Zambian institutions canbe achieved.

  • PDF

보급형 천리안 위성 기상정보 수신시스템을 위한 FPGA 기반 기상정보 데이터 수신회로 개발 (Development of FPGA-based Meteorological Information Data Receiver Circuit for Low-Cost Meteorological Information Receiver System for COMS)

  • 류상문
    • 한국정보통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2373-2379
    • /
    • 2015
  • 우리나라 최초의 정지궤도 기상위성인 천리안 위성은 고속/저속 전송자료 서비스(HRIT/LRIT: High/Low Rate Information Transmission)를 통해 기상정보를 무료로 제공하고 있다. 본 논문은 천리안 위성의 기상정보를 수신할 수 있는 개인용 PC 기반 보급형 기상정보 수신시스템을 구축하는데 필수적인 기상정보 데이터 수신회로 개발을 소개한다. 기상정보 데이터 수신회로는 HRIT/LRIT 서비스 데이터 유닛에 대해 물리 계층과 데이터 링크 계층에 대응하는 작업을 수행한다. 이를 위해 기상정보 데이터 수신회로는 Viterbi 디코더, Sync. word 감지회로, Derandomizer, Reed-Solomon 디코더 등을 포함하고 수신된 기상정보 데이터를 호스트 PC에 제공하기 위해 PCI Express 전송 방식을 지원한다. 개발된 기상정보 데이터 수신회로는 FPGA(field programmable gate array)를 이용하여 구현되었으며 시뮬레이션과 실제 하드웨어를 통하여 그 기능이 검증되었다.

IPCC WGI 평가보고서 주요내용 비교를 통한 기후변화에 관한 과학적 진보 (Progresses of Climate Change Sciences in IPCC Assessment Reports)

  • 권원태;구교숙;부경온
    • 대기
    • /
    • 제17권4호
    • /
    • pp.483-492
    • /
    • 2007
  • The objective of this study is to describe scientific progresses in understanding of climate change in the Intergovernmental Panel on Climate Change (IPCC) assessment reports, contributed by Working group I. Since 1988, IPCC's four assessment reports showed significant improvements in understanding of observed climate change, drivers of climate change, detection and attribution of climate change, climate models, and future projection. The results are based on large amounts of observation data, sophisticated analyses of data, improvements of climate models and the simulations. While the First Assessment Report (FAR) in 1990 reported that a detectable anthropogenic influence on climate has little observational evidence, the Fourth Assessment Report (AR4) reported that warming of the climate system is unequivocal and is very likely due to human influences. It is also noted that anthropogenic warming and sea level rise would continue for centuries due to the time scales associated with climate processes and feedbacks, even if greenhouse gas were to be stabilized.

낙동강 구미 보의 증기 안개 발생 시의 미기상학적 특성 (Micro-meteorological Characteristics during the Steam Fog over the Gumi Reservoir of Nakdong River)

  • 김해동;조창범;서광수
    • 한국환경과학회지
    • /
    • 제25권3호
    • /
    • pp.405-415
    • /
    • 2016
  • We analyzed the micro-meteorological characteristics during typical steam fog over the Gumi Reservoir of Nakdong river with the field observation data for recent 2 year(1 April 2013~31 March 2015) collected by the national institute of meteorological research, KMA. Steam fog occur when the cold drainage flows over the warm water surface. As the sensible and latent heat from water are provided to the air, the instability of lower atmosphere is increased. The resultant vertical mixing of warm, moist air near water surface and cold air aloft causes the formation of status cloud. The convection strengthened by radiative cooling of the upper part of the stratus causes the fog to propagate downward. Also, the temperature at the lowest atmosphere is increased rapidly and the inversion near surface disappear by these processes when the fog forms. The increase of wind speed is observed because the downward transportation of momentum is caused by vertical mixing.

GloSea5 모형의 계절내-계절 예측성 검정: Part 2. 성층권 돌연승온 (Subseasonal-to-Seasonal (S2S) Prediction of GloSea5 Model: Part 2. Stratospheric Sudden Warming)

  • 송강현;김혜라;손석우;김상욱;강현석;현유경
    • 대기
    • /
    • 제28권2호
    • /
    • pp.123-139
    • /
    • 2018
  • The prediction skills of stratospheric sudden warming (SSW) events and its impacts on the tropospheric prediction skills in global seasonal forecasting system version 5 (GloSea5), an operating subseasonal-to-seasonal (S2S) model in Korea Meteorological Administration, are examined. The model successfully predicted SSW events with the maximum lead time of 11.8 and 13.2 days in terms of anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), respectively. The prediction skills are mainly determined by phase error of zonal wave-number 1 with a minor contribution of zonal wavenumber 2 error. It is also found that an enhanced prediction of SSW events tends to increase the tropospheric prediction skills. This result suggests that well-resolved stratospheric processes in GloSea5 can improve S2S prediction in the troposphere.