DOI QR코드

DOI QR Code

Subseasonal-to-Seasonal (S2S) Prediction of GloSea5 Model: Part 2. Stratospheric Sudden Warming

GloSea5 모형의 계절내-계절 예측성 검정: Part 2. 성층권 돌연승온

  • Song, Kanghyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Hera (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Sang-Wook (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kang, Hyun-Suk (Earth System Research Division, National Institute of Meteorological Sciences) ;
  • Hyun, Yu-Kyung (Earth System Research Division, National Institute of Meteorological Sciences)
  • 송강현 (서울대학교 자연과학대학 지구환경과학부) ;
  • 김혜라 (서울대학교 자연과학대학 지구환경과학부) ;
  • 손석우 (서울대학교 자연과학대학 지구환경과학부) ;
  • 김상욱 (서울대학교 자연과학대학 지구환경과학부) ;
  • 강현석 (국립기상과학원 지구시스템연구과) ;
  • 현유경 (국립기상과학원 지구시스템연구과)
  • Received : 2018.02.20
  • Accepted : 2018.04.27
  • Published : 2018.06.30

Abstract

The prediction skills of stratospheric sudden warming (SSW) events and its impacts on the tropospheric prediction skills in global seasonal forecasting system version 5 (GloSea5), an operating subseasonal-to-seasonal (S2S) model in Korea Meteorological Administration, are examined. The model successfully predicted SSW events with the maximum lead time of 11.8 and 13.2 days in terms of anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), respectively. The prediction skills are mainly determined by phase error of zonal wave-number 1 with a minor contribution of zonal wavenumber 2 error. It is also found that an enhanced prediction of SSW events tends to increase the tropospheric prediction skills. This result suggests that well-resolved stratospheric processes in GloSea5 can improve S2S prediction in the troposphere.

Keywords

References

  1. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584. https://doi.org/10.1126/science.1063315
  2. Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere-troposphere coupling indices. Q. J. R. Meteorol. Soc., 135, 1661-1672. https://doi.org/10.1002/qj.479
  3. Butler, A. H., D. J. Seidel, S. C. Hardiman, N. Butchart, T. Birner, and A. Match, 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc., 96, 1913-1928, doi:10.1175/BAMS-D-13-00173.1.
  4. Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate., 20, 449-469. https://doi.org/10.1175/JCLI3996.1
  5. Choi, J., S.-W. Son, Y.-G. Ham, J.-Y. Lee, and H.-M. Kim, 2016: Seasonal-to-interannual prediction skills of near-surface air temperature in the CMIP5 decadal hindcast experiments. J. Climate, 29, 1511-1527, doi:10.1175/JCLI-D-15-0182.1.
  6. Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245-272, doi:10.1007/s00382-012-1481-2.
  7. Ichimaru, T., S. Noguchi, T. Hirooka, and H. Mukougawa, 2016: Predictability changes of stratospheric circulations in Northern Hemisphere winter. J. Meteorol. Soc. Japan, 94, 7-24, doi:10.2151/jmsj.2016-001.
  8. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, submitted (in Korean with English abstract).
  9. Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48, doi:10.2151/jmsj.2015-001.
  10. Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Q. J. R. Meteorol. Soc., 136, 886-893, doi:10.1002/qj.620.
  11. Marshall, A. G., and A. A. Scaife, 2010: Improved predictability of stratospheric sudden warming events in an atmospheric general circulation model with enhanced stratospheric resolution. J. Geophys. Res., 115, D16114, doi:10.1029/2009JD012643.
  12. Martineau, P., and S.-W. Son, 2015: Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves. J. Climate, 28, 7347-7370, doi:10.1175/JCLI-D-14-00478.1.
  13. Matsuno, T., 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479-1494. https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2
  14. Mukougawa, H., and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 1764-1776. https://doi.org/10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2
  15. Noguchi, S., H. Mukougawa, Y. Kuroda, R. Mizuta, S. Yabu, and H. Yoshimura, 2016: Predictability of the stratospheric polar vortex breakdown: An ensemble reforecast experiment for the splitting event in January 2009. J. Geophys. Res., 121, 3388-3404, doi: 10.1002/2015JD024581.
  16. Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 3548-3554. https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2
  17. Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98-102, doi:10.1038/ngeo1698.
  18. Song, K., S.-W. Son, and S.-H. Woo, 2015: Impact of sudden stratospheric warming on the surface air temperature in East Asia. Atmosphere, 25, 461-472 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.3.461
  19. Stan, C., and D. M. Straus, 2009: Stratospheric predictability and sudden stratospheric warming events. J. Geophys. Res., 114, D12103.
  20. Taguchi, M., 2015: Connection of predictability of major stratospheric sudden warmings to polar vortex geometry. Atmos. Sci. Lett., 17, 33-38, doi:10.1002/asl.595.
  21. Thompson, D. W., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part 1: Month-to-month variability. J. Climate, 13, 1000-1016. https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
  22. Tripathi, O. P., and Coauthors, 2015a: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q. J. R. Meteorol. Soc., 141, 987-1003, doi:10.1002/qj.2432.
  23. Tripathi, O. P., A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015b: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett., 10, 104007, doi:10.1088/1748-9326/10/10/104007.
  24. Vitart, F., and Coauthors, 2017: The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Amer. Meteor. Soc., 98, 163-173, doi:10.1175/BAMS-D-16-0017.1.
  25. Woo, S.-H., B.-M. Kim, and J.-S. Kug, 2015: Temperature Variation over East Asia during the lifecycle of weak stratospheric polar vortex. J. Climate, 28, 5857-5872, doi:10.1175/JCLI-D-14-00790.1.