• Title/Summary/Keyword: Meteorological Big Data

Search Result 75, Processing Time 0.019 seconds

Smart Plant Disease Management Using Agrometeorological Big Data (농업기상 빅데이터를 활용한 스마트 식물병 관리)

  • Kim, Kwang-Hyung;Lee, Junhyuk
    • Research in Plant Disease
    • /
    • v.26 no.3
    • /
    • pp.121-133
    • /
    • 2020
  • Climate change, increased extreme weather and climate events, and rapidly changing socio-economic environment threaten agriculture and thus food security of our society. Therefore, it is urgent to shift from conventional farming to smart agriculture using big data and artificial intelligence to secure sustainable growth. In order to efficiently manage plant diseases through smart agriculture, agricultural big data that can be utilized with various advanced technologies must be secured first. In this review, we will first learn about agrometeorological big data consisted of meteorological, environmental, and agricultural data that the plant pathology communities can contribute for smart plant disease management. We will then present each sequential components of the smart plant disease management, which are prediction, monitoring and diagnosis, control, prevention and risk management of plant diseases. This review will give us an appraisal of where we are at the moment, what has been prepared so far, what is lacking, and how to move forward for the preparation of smart plant disease management.

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.

Negative association between high temperature-humidity index and milk performance and quality in Korean dairy system: big data analysis

  • Dongseok Lee;Daekyum Yoo;Hyeran Kim;Jakyeom Seo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.588-595
    • /
    • 2023
  • The aim of this study was to investigate the effects of heat stress on milk traits in South Korea using comprehensive data (dairy production and climate). The dataset for this study comprised 1,498,232 test-day records for milk yield, fat- and protein-corrected milk, fat yield, protein yield, milk urea nitrogen (MUN), and somatic cell score (SCS) from 215,276 Holstein cows (primiparous: n = 122,087; multiparous: n = 93,189) in 2,419 South Korean dairy herds. Data were collected from July 2017 to April 2020 through the Dairy Cattle Improvement Program, and merged with meteorological data from 600 automatic weather stations through the Korea Meteorological Administration. The segmented regression model was used to estimate the effects of the temperature-humidity index (THI) on milk traits and elucidate the break point (BP) of the THI. To acquire the least-squares mean of milk traits, the generalized linear model was applied using fixed effects (region, calving year, calving month, parity, days in milk, and THI). For all parameters, the BP of THI was observed; in particular, milk production parameters dramatically decreased after a specific BP of THI (p < 0.05). In contrast, MUN and SCS drastically increased when THI exceeded BP in all cows (p < 0.05) and primiparous cows (p < 0.05), respectively. Dairy cows in South Korea exhibited negative effects on milk traits (decrease in milk performance, increase in MUN, and SCS) when the THI exceeded 70; therefore, detailed feeding management is required to prevent heat stress in dairy cows.

Design and Implementation of Machine Learning System for Fine Dust Anomaly Detection based on Big Data (빅데이터 기반 미세먼지 이상 탐지 머신러닝 시스템 설계 및 구현)

  • Jae-Won Lee;Chi-Ho Lin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.55-58
    • /
    • 2024
  • In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dust and big data. This system classifies fine dust through the design of an anomaly detection algorithm according to the outliers for each air quality index classification categories based on machine learning. Depth data of the image collected from the camera collects images according to the level of fine dust, and then creates a fine dust visibility mask. And, with a learning-based fingerprinting technique through a mono depth estimation algorithm, the fine dust level is derived by inferring the visibility distance of fine dust collected from the monoscope camera. For experimentation and analysis of this method, after creating learning data by matching the fine dust level data and CCTV image data by region and time, a model is created and tested in a real environment.

Machine Learning-based Estimation of the Concentration of Fine Particulate Matter Using Domain Adaptation Method (Domain Adaptation 방법을 이용한 기계학습 기반의 미세먼지 농도 예측)

  • Kang, Tae-Cheon;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1208-1215
    • /
    • 2017
  • Recently, people's attention and worries about fine particulate matter have been increasing. Due to the construction and maintenance costs, there are insufficient air quality monitoring stations. As a result, people have limited information about the concentration of fine particulate matter, depending on the location. Studies have been undertaken to estimate the fine particle concentrations in areas without a measurement station. Yet there are limitations in that the estimate cannot take account of other factors that affect the concentration of fine particle. In order to solve these problems, we propose a framework for estimating the concentration of fine particulate matter of a specific area using meteorological data and traffic data. Since there are more grids without a monitor station than grids with a monitor station, we used a domain adversarial neural network based on the domain adaptation method. The features extracted from meteorological data and traffic data are learned in the network, and the air quality index of the corresponding area is then predicted by the generated model. Experimental results demonstrate that the proposed method performs better as the number of source data increases than the method using conditional random fields.

The Effect of Highland Weather and Soil Information on the Prediction of Chinese Cabbage Weight (기상 및 토양정보가 고랭지배추 단수예측에 미치는 영향)

  • Kwon, Taeyong;Kim, Rae Yong;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.701-707
    • /
    • 2019
  • Highland farming is agriculture that takes place 400 m above sea level and typically involves both low temperatures and long sunshine hours. Most highland Chinese cabbages are harvested in the Gangwon province. The Ubiquitous Sensor Network (USN) has been deployed to observe Chinese cabbages growth because of the lack of installed weather stations in the highlands. Five representative Chinese cabbage cultivation spots were selected for USN and meteorological data collection between 2015 and 2017. The purpose of this study is to develop a weight prediction model for Chinese cabbages using the meteorological and growth data that were collected one week prior. Both a regression and random forest model were considered for this study, with the regression assumptions being satisfied. The Root Mean Square Error (RMSE) was used to evaluate the predictive performance of the models. The variables influencing the weight of cabbage were the number of cabbage leaves, wind speed, precipitation and soil electrical conductivity in the regression model. In the random forest model, cabbage width, the number of cabbage leaves, soil temperature, precipitation, temperature, soil moisture at a depth of 30 cm, cabbage leaf width, soil electrical conductivity, humidity, and cabbage leaf length were screened. The RMSE of the random forest model was 265.478, a value that was relatively lower than that of the regression model (404.493); this is because the random forest model could explain nonlinearity.

Utilizing Integrated Public Big Data in the Database System for Analyzing Vehicle Accidents

  • Lee, Gun-woo;Kim, Tae-ho;Do, Songi;Jun, Hyun-jin;Moon, Yoo-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.99-105
    • /
    • 2017
  • In this paper, we propose to design and implement the database management system for analyzing vehicle accidents through utilizing integration of the public big data. And the paper aims to provide valuable information for recognizing seriousness of the vehicle accidents and various circumstances at the accident time, and to utilize the produced information for the insurance company policies as well as government policies. For analysis of the vehicle accidents the system utilizes the integrated big data of National Indicator System, the Meteorological Office, National Statistical Office, Korea Insurance Development Institute, Road Traffic Authority, Ministry of Land, Infrastructure and Transport as well as the National Police Agency, which differentiates this system from the previous systems. The system consists of data at the accident time including weather conditions, vehicle models, age, sex, insurance amount etc., by which the database system users are able to obtain the integral information about vehicle accidents. The result shows that the vehicle accidents occur more frequently in the clear weather conditions, in the vehicle to vehicle conditions and in crosswalk & crossway. Also, it shows that the accidents in the cloudy weather leads more seriously to injury and death than in the clear weather. As well, the vehicle accident information produced by the system can be utilized to effectively prevent drivers from dangerous accidents.

A Study on the Estimation of Air-Sea Heat Fluxes and the Wave Characteristics using Chilbaldo Buoy Data (칠발도 Buoy자료를 이용한 해양-대기 열교환량 산출 및 파랑 특성에 관한 연구)

  • Youn, Yong-Hoon;Hong, Sung-Gil;Hong, Yoon;Lee, Ji-Yeon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • Hourly meteorological data from a marine buoy ($34^{\circ}49'00"N$, $125^{\circ}46'00"E$) operated by the Korean Meteorological Agency were obtained from July, 1996 to February, 1997. From the data air-sea heat fluxes and marine meteorological characteristics around the area are estimated. The maximum outflux of sensible heat from the sea surface occurred in January (monthly mean value, 12.6 $Wm^{-2}$ and the maximum influx to the sea occurred in July (monthly mean value, 5.5 $Wm^{-2}$). This means that the sea is heated in summer while it loses its heat in winter, and that there is inequality between the absolute values of the two seasons. The outflux of the maximum latent heat occurred in November (monthly mean value, 86.5 $Wm^{-2}$) and reach a value of 300 $Wm^{-2}$, and the maximum influx occurred in July (monthly mean value, 4.6 $Wm^{-2}$). Big difference is shown in their absolute values when the wind becomes strong. The outgoing latent heat flux reaches its maximum in autumn, and it maintains the high value through the whole winter. According to the wave data analysis, the significant wave heights are larger in winter than in summer. The periods of the significant waves are 4~6 sec. In winter, waves propagated from north and northeast are dominant because of the winter monsoon, while in summer waves from south, southwest, and west are relatively frequent.

  • PDF

Correlation Between Meteorological Factors and Hospital Power Consumption (기상요인과 병원 전력사용량의 상관관계)

  • Kim, Jang-Mook;Cho, Jung-Hwan;Kim, Byul
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.457-466
    • /
    • 2016
  • To achieve eco-friendly hospitals it is necessary to empirically verify the effect of meteorological factors on the power consumption of the hospital. Using daily meteorological big data from 2009 to 2013, we studied the weather conditions impact to power consumption and analyzed the patterns of power consumption of two hospitals. R analysis revealed that temperature among the meteorological factors had the greatest impact on the hospital power consumption, and was a significant factor regardless of hospital size. The pattern of hospital power consumption differed considerably depending on the hospital size. The larger hospital had a linear pattern of power consumption and the smaller hospital had a quadratic nonlinear pattern. A typical pattern of increasing power consumption during a hot summer and a cold winter was evident for both hospitals. The results of this study suggest that a hospital's functional specificity and meteorological factors should be considered to improve energy savings and eco-friendly building.

Construction of Spatial Information Big Data for Urban Thermal Environment Analysis (도시 열환경 분석을 위한 공간정보 빅데이터 구축)

  • Lee, Jun-Hoo;Yoon, Seong-Hwan
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.53-58
    • /
    • 2020
  • The purpose of this study is to build a database of Spatial information Bigdata of cities using satellite images and spatial information, and to examine the correlations with the surface temperature. Using architectural structure and usage in building information, DEM and Slope topographical information for constructed with 300 × 300 mesh grids for Busan. The satellite image is used to prepare the Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Bare Soil Index (BI), and Land Surface Temperature (LST). In addition, the building area in the grid was calculated and the building ratio was constructed to build the urban environment DB. In architectural structure, positive correlation was found in masonry and concrete structures. On the terrain, negative correlations were observed between DEM and slope. NDBI and BI were positively correlated, and NDVI was negatively correlated. The higher the Building ratio, the higher the surface temperature. It was found that the urban environment DB could be used as a basic data for urban environment analysis, and it was possible to quantitatively grasp the impact on the architecture and urban environment by adding local meteorological factors. This result is expected to be used as basic data for future urban environment planning and disaster prevention data construction.