• Title/Summary/Keyword: Metallurgical structure

Search Result 352, Processing Time 0.02 seconds

Local brittle zone of offshore structural steel welds (해양구조용 강재의 국부취화영역에 관한 연구)

  • 김병천;엄정현;이종섭;이성학;이두영
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.35-48
    • /
    • 1989
  • This study is concerned with a correlation of microstructure and local brittle zone (LBZ) in offshore structural steel welds. The influence of the LBZ on fracture toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in void and cleavage microcrack formation were also identified using notched round tensile tests and subsequent SEM observations. The LBZ in the HAZ of a multiphase welded joint is the interstitially reheated coarse grained HAZ, which is influenced by metallurgical factors such as effective grain size, the major matrix structure and the amount of high-carbon martensite-austenite (M-A) constituents. The experimental results indicate that Chirpy energy was found to scale monotonically with the amount of M-A constituents, confirming that the M-A constituent is the major microstructural factor controlling the HAZ toughness. In addition, voids and microcracks are observed to initiate at M-A constituents by the shear cracking process. Thus, the M-A constituent played an important role in initiating the voids and microcracks, and consequently caused brittle fracture.

  • PDF

The Effects of the Amount of $\textrm{SiO}_2$ Dopant on the Melt Oxidation Behavior of the Al-Alloy (Al-합금의 용융산화거동에 미치는 $\textrm{SiO}_2$도판트 량의 영향)

  • Gang, Jeong-Yun;Kim, Il-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.609-614
    • /
    • 1999
  • The effect of the amount of $SiO_2$dopant on the behavior of $AlO_2$$O_3$-composite formation by melt oxdation of Al-alloy was examined in this paper. The $SiO_2$powder was spread on the top surface of the Al-1Mg-3-Si-5Zn-1Cu alloy in th alumina crucible. The selected amount of each powder was 0.03, 0.10, 0.16g/$\textrm{cm}^2$. The oxidation behavior was determined by observing the weight gain after the heat treatment for 10 hours at 1373K. The macroscopic structure of formed oxide layer was examined by an optical microscope. The top surface and the cross-section of the grown oxide layer were investigated by SEM and analysed by EDX. The $SiO_2$ powder was determined to enhance oxidation by thermit reaction with Al which reduced the growth incubation period of the oxidation layer. As the amount of the $SiO_2$dopant increased, the growth rate decreased due to the precipitated Si which blocked the Al-alloy channel in the composite materials. However, more uniform layer was obtained due to the occurrance of the enhanced oxidation reaction in the whole alloy surface compared to the case of addition of less amount of dopant.

  • PDF

Effects of Naphthalene Trisulfonic Acid on the Surface Properties of Electrodeposited Ni Layer (Naphthalene Trisulfonic Acid가 니켈 전착층의 표면 특성에 미치는 영향)

  • Lee Joo-Yul;Kim Man;Kwon Sik-Chol;Kim Jung-Hwan;Kim In-gon
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • The effects of an organic additive, naphthalene trisulfonic acid (NTSA), contained in the nickel sulfamate bath on the surface properties of the electrodeposited nickel layer were investigated through electrochemical technique, x-ray diffraction analysis, and microscopic observation. The addition of NTSA facilitated the oxidation process of electrodeposited nickel layer during anodic scan and also increased the hardness and internal stress of the nickel film as the applied current density became higher. It seems that NTSA modulated the deposit structure during electrodeposition and so induced higher distribution of (110) orientation with respect to (200). With the increase of the NTSA in the bath, nickel layer was formed in small grain size, which resulted in enhanced surface evenness and brightness.

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

Synthesis and Characterization of $CeO_2$ Powders by the Hydrothermal Process (수열합성법을 이용한 세륨산화물 나노분말의 특성 및 합성에 대한 연구)

  • Kong, Myung-Ho;Na, Han-Gil;Kim, Hyoun-Woo;Yang, Hack-Hui
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.49-54
    • /
    • 2010
  • We have successfully synthesized $CeO_2$ nanopowders by means of the hydrothermal method, in a low temperature range of $100-200^{\circ}C$. In order to investigate the structure and morphology of the nanopowders, scanning electron microscopy and X-ray diffraction have been employed. In addition, for exploring the optical properties, Raman spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy have been used. In the optimized condition, with the pH, velocity, and time of 4.5, 600 rpm, and 60 h, the $CeO_2$ nanopowders with a diameter ranging from 50 to 150 nm have been synthesized. The nanopowders exhibited the visible emission mainly in the blue region. With comparing the reaction time, it is revealed that the extinction of functional groups at 60 h contributed to the growth and homogenization of the $CeO_2$ powders. Since the overgrowth and agglomeration of nanopowders were found, we suggest that the cracking/growth process is more favorable mechanism than the dissolution/precipitation process.

Structure and Magnetic Properties of Mechanically Alloyed Sm(Fe,Ti)$_7$ Compounds and Their Nitrides

  • Kim, H.T.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.57-60
    • /
    • 2001
  • Mechanically alloyed $TbCu_7 -type \;Sm_{12.5}Fe_{87.5-x}Ti_x$(x=0, 2.5, 5, 7.5),and their nitrides have been studied systematically by X-ray diffraction, A.C. initial susceptibility, and pulsed magnetization measurement. In this series, the volume expansion by nitriding is 5.6%~7.3%, and the increment of the Curie temperature is in the range of 21$0^{\circ}C$~35$0^{\circ}C$. With increasing Ti content, the remanence decreases linearly due to the substitution of non-magnetic Ti, and the coercivity decreases rapidly from 34.6 kA/cm (43.5 kOe) for $\chi$=0 to 14.3 kA/cm (18 kOe) for $\chi$=7.5. In the $Sm_{12.5}Fe_{87.5-x}Ti_xN_y$ series, the best magnetic properties were obtained from .7Ti7Ny series, the best magnetic properties were obtained from $Sm_{12.5}Fe_{87.5}N_y$($\chi$=0) with $_iH_c$=34.6 kA/cm (43.5 kOe), $B_r=0.75 \;T, \;and (BH)_{max}=113.8 kJ/m^3$(10.9 MGOe).

  • PDF

Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding (고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성)

  • Yeo, Ki-Ho;Park, Eun-Soo;Lee, Han-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

Impact of Cyano and Fluorine Group Functionalization on the Optoelectronic and Photovoltaic Properties of Donor-Acceptor-π-Acceptor Benzothiadiazole Derived Small Molecules: A DFT and TD-DFT Study

  • Prabhat Gautam;Anurag Gautam;Neeraj Kumar
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.236-241
    • /
    • 2023
  • Solar cells based on p-conjugated donor-acceptor (D-A) organic molecular systems are a promising alternative to conventional electrical energy generation. D-A molecular systems, which have a triphenylamine (TPA) moiety linked with a benzothiadiazole (BTD) moiety, open the potential development of new small molecule donors for bulk heterojunction (BHJ) solar cells. Here, a series of donor-acceptor-π-acceptor (D-A-π-A) small molecule donors (SMD) derived from triphenylamine (TPA) donor and benzothiadiazole (BTD) acceptor building blocks, were designed for BHJ organic solar cells. The small molecule donors SMD1-4 were studied using density functional theory (DFT) and time dependent-DFT (TDDFT) methods, to understand the effect of cyano and fluorine group functionalization on their properties. The effect of structure alteration by cyano and fluorine group functionalization on the optoelectronic properties, the calculated highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) and the HOMO-LUMO gaps were theoretically explored. The Voc (open-circuit photovoltage) and fill factor (FF) for SMD1-4 were obtained with a PC71BM acceptor, which showed that these organic small molecules are potential small molecule donors for organic bulk heterojunction solar cells.

Effects of Continuous Annealing Conditions on the Properties of Extra Low Cabon Steel Sheets Containing B, Nb and Ti (B, Nb 및 Ti를 함유한 극저탄소강판에서 연속열처리조건이 재질에 미치는 영향)

  • Lee, Jong-Mu;Yun, Guk-Han;Lee, Do-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.44-54
    • /
    • 1994
  • Effects of cooling rate, cold reduction %, continuous annealing treatments on the recrystallization texture structure of the A1 killed extra low carbon steel sheet contaning Ti, Nb, and B were investigated. The texture coefficient ratio TC (222)/TC (200) tends to increase with decreasing the cooling rate of the coling process and increasing cold reduction %. However, the texture coefficient ratio tends to decrease as the cold reduction % increases from 80% to 90%, which may be due to the change of the primary texture structure from {554} (225) to {ill] (1 1%). The optimum fabrication procedures for the steel sheet with a maximum texture coefficient ratio may be : furnance cooling after the coiling treatment, 80% cold reduction and the continuous annealing treatment of holding at 80O0C for 1 min., water quenching and then holding at $450^{\circ}C$ for 5min.

  • PDF

Fabrication of Porous W by Heat Treatment of Pore Forming Agent of PMMA and WO3 Powder Compacts (기공형성제 PMMA와 WO3 분말 성형체의 열처리를 이용한 W 다공체 제조)

  • Jeon, Ki Cheol;Kim, Young Do;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.129-133
    • /
    • 2015
  • Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and $WO_3$ powder compacts. The PMMA sizes of 8 and $50{\mu}m$ were used as pore forming agent for fabricating the porous W. The $WO_3$ powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at $1200^{\circ}C$ in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about $400^{\circ}C$ and $WO_3$ was reduced to metallic W at $800^{\circ}C$. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.