• Title/Summary/Keyword: Metallic plate

Search Result 212, Processing Time 0.028 seconds

Imperfection Mode of Thin Metallic Sandwich Plate with Pyramidal Metallic Inner Structures (피라미드형 금속 내부구조체를 가진 얇은 금속샌드위치 판재의 결함 모드)

  • Ahn, Dong-Gyu;Sun, Hyang-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Thin metallic sandwich plate with pyramidal metallic inner structures is manufactured from a continuous projection welding between face sheets and inner structures. Due to the welding pressure, imperfections of inner structures induced by the deformation of the inner structures occur. The imperfections affect the response of the thin metallic sandwich plate subjected to low-velocity impact loading. The goal of this paper is to obtain a proper dominant imperfection mode of the thin metallic sandwich plate with pyramidal metallic inner structures. The variation of impact responses of the thin metallic sandwich plate for different imperfection modes are investigated by finite element analysis. The results of the FE analysis are compared to those of drop impact experiments. From the results of the comparison, it has been shown that the dominant imperfection mode of the thin metallic sandwich plate with pyramidal metallic inner structures is all type of symmetric imperfection mode with symmetrical imperfections of four struts.

Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core (트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구)

  • Jung, Chang-Gyun;Seong, Dae-Yong;Yang, Dong-Yol;Kim, Jin-Suck;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.

Comparative Study of Metallic and Non-metallic Stiffened Plates in Marine Structures

  • Jeong, Han-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2010
  • In this paper, a comparative study of metallic and non-metallic stiffened plates under a lateral pressure load is performed using conventional statistically determinate and SQP(Sequential Quadratic Programming) optimisation approaches. Initially, a metallic flat-bar stiffened plate is exemplified from the superstructure of a marine vessel and, subsequently, its structural topology is varied as hat-section stiffened FRP(Fibre Reinforced Plastics) single skin plates and monocoque FRP sandwich plates having a PVC foam core. These proposed structural alternatives are analysed using elastic closed-form solutions and SQP optimisation method under stress and deflection limits obtained from practice to calculate and optimise geometry dimensions and weights. Results obtained from the comparative study provide useful information for marine designers especially at the preliminary design stage where various building materials and structural configurations are dealt with.

Assessment of Xenogenic Bone Plate and Screw using Finite Element Analysis

  • Heo, Su-young;Lee, Dong-bin;Kim, Nam-soo
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior of xenogenic bone plate system (equine bone) using a three-dimensional finite element ulna fracture model. The model was used to calculate the Von Mises stress (VMS) and stress distribution in fracture healing periods with metallic bone plate and xenogenic bone plate systems, which are installed while the canine patient is standing. Bone healing rate (BHR) (0%) and maximum VMS of the xenogenic plate was similar to the yield strength of equine bone (125 MPa). VMS at the ulna and fracture zones were higher with the xenogenic bone plate than with the metallic bone plate at BHRs of 0% and 1%. Stress distributions in fracture zone were higher with the xenogenic bone plate than the metallic bone plate. This study results indicate that the xenogenic bone plate may be considered more beneficial for callus formation and bone healing than the metallic bon plate. Xeonogenic bone plate and screw applied in clinical treatment of canines may provide reduced stress shielding of fractures during healing.

Performance Test of Liquid Cooling Type Cold Plates for Robot Cooling (로봇 냉각을 위한 수냉식 냉각판의 성능 평가)

  • Lee, Suk-Won;Karng, Sarng-Woo;Hwang, Kyu-Dae;Kim, Seo-Young;Rhee, Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2008
  • The increase of system weight due to installation of cooling devices adds electrical and mechanical loads of humanoid robot, and in return, results in much heat. Therefore, the weight of cooling system is a critical issue for robot cooling. In this study, we propose non-metallic cold plates to deal with such problems. We compare thermal performances between one metallic cold plate and five different types of non-metallic cold plates. A metallic cold plate is totally made of copper. Five non-metallic PC(polycarbonate) cold plates, which are designed to reduce the overall weight of robot cooling system, are composed of a polycarbonate cover with different types of base plate. The overall heat transfer coefficients per unit mass and thermal resistances are obtained for the cold plates. The metallic cold plate shows the best thermal performance. It is interesting to note that the PC cold plate with an aluminum base plate with 18 channels shows the best overall heat transfer coefficient per unit mass. Most polycarbonate cold plates display fairly comparable thermal performance with more reduced system weight compared to the metallic cold plate.

Development of PEMFC Metallic Bipolar Plate for Automotive Driving (자동차 구동용 PEMFC 금속계 분리판 개발)

  • Lee, Jong-Chan;Kim, Ki-Jung;Yang, Yoo-Chang;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.89-92
    • /
    • 2007
  • The metallic bipolar plate in PEMFC is widely used for automotive driving because of its advantages, i) high strength, ii) high chemical stability, iii) low gas permeability and iv) applicability to mass production. Especially, the metallic bipolar plate which is manufactured with the sheet metal stamping process can be applied in automotive PEMFC with less volume and weight because of its thin thickness but the formability and springback problems arise in real manufacturing process. The assessment for formability and springback of metallic bipolar plate should be performed before making stamping die sets. In this work, the methodology for determining the allowable draft angle of flow passage is introduced by using finite element analysis. In analysis results, as the draft angle of flow passage increase, the major strain and thinning is increase with exponential function. The allowable draft angle without fracture is presented by fitting the results. Additionally, the staking results with manufactured metallic bipolar plates by stamping process is presented.

  • PDF

Practicability Strength Assessment of a Bone Metallic Plate at the Femur Fixation (대퇴골(Femur)고정용 골 금속판 제작 및 강도 평가)

  • Kim, Jeong-Lae;Ahn, Chang-Sik;Seo, Byoung-Do
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • Study was developed the metallic plate for fixation in the femur fracture and plates has a firm place in fracture treatment. This plates can be stabilized for fracture fixation as well as biological and dynamical device. The device's designation and sizing has a optimization with bending structural stiffness and strength, known meaning that is reliable regardless of the plate by the short type and long type. The bending strength of the curved metallic long plate has to evaluate a 11,000N and the bending strength of the curved metallic short plate has to evaluate a 6,525N. This see the X-ray image of bending angle made certain of 15$^{\circ}$ at number 2 and same 82.87$^{\circ}$ at number 2, 4, 5, 7, 8, 9, 10 by outside angle, and confirmed 25.26$^{\circ}$ at number 3, 3.68$^{\circ}$ at number 6, 15.64$^{\circ}$ at number 9 by inside angle. This study shows that keep up the metallic plate for fixation in the femur fracture through X-ray Image and the device can be used to support Revision case of Hip Implant and to use a case of Hip screw compression of Hip Neck Fracture. Short plate have a wrapping of femur and long plate have to preserve a pole of femur.

A Study on Large Area Roll Projection Welding for Metallic Sandwich Plate : Part 1 - Process Monitoring (금속 샌드위치 판재 대면적 롤 프로젝션 용접에 관한 연구 : Part 1 - 공정 모니터링)

  • Ahn, Jun-Su;Kim, Jong-Hwa;Na, Suck-Joo;Lim, Ji-Ho
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.85-91
    • /
    • 2009
  • A roll projection welding machine is introduced to fabricate metallic sandwich plate consisting of a structured inner sheet with projection-like shape and a pair of skin sheets. To fabricate the metallic sandwich plate of consistent and good quality, two process monitoring methods are introduced; dynamic resistance monitoring and skin sheet temperature monitoring. Dynamic resistance monitoring has no time delay but gives only averaged value over plate width. Skin sheet temperature monitoring has certain amount of time delay but is good for predicting weld quality of specified position. By the two complementary monitoring methods, the characteristics of the new welding process is successfully understood.

Study of Au-PTFE/Al Metallic bipolar plate for PEMFC (고분자 전해질형 연료전지용 Au-PTFE/Al 금속분리판 연구)

  • Yoo, Seung-Eul;Kim, Myong-Hwan;Goo, Young-Mo
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.75-82
    • /
    • 2007
  • Aluminum was used as metallic bipolar plate material to reduce a stack weight. The functional materials such as conductive material, Au and nonconductive material, PTFE [polytetrafluoroethylene] were coated on the bipolar plate to enhance electrical contact and corrosion prevention in PEMFC. The active area of bipolar plate is divided into the top layer part that electric current mainly passes, and the bottom layer part that gas and water pass. The bottom layer part in the flow channel needs not to have electrical conductivity because it doesn't pass electric current directly. In this reason, Au on the top layer and PTFE on the bottom layer were coated to apply high electrical conductivity and/or good corrosion resistance. Although the single cell performance using Au-PTFE/Al bipolar plate was shown 78% in comparison with that of graphite, specific power of Au-PTFE/Al bipolar plate(0.4 W/g) was twice as much as graphite bipolar plate.

  • PDF

Development of high durable metallic bipolar plate for Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지 금속분리판 코팅 내구성 평가)

  • Kim, Minsung;Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.87.1-87.1
    • /
    • 2010
  • Metallic bipolar plate is the one of the promising candidate material for PEMFC because of mechanical strength, low gas permeability, electrical and thermal conductivity. However, the corrosion is the main obstacle of metallic bipolar plate, and many investigations, especially coating on base metal, have been carried out to avoid corrosion. Gold is considered as the one of the best coating material because of its corrosion resistance and electrical conductivity. In this study, gold coated metallic bipolar plate was developed and evaluated. Due to our coating process, gold can be well-adhere to the base material, and hydrophobic material on its gold surface was coated by dipping method for better water management. To verify coating reliability, a single fuel cell(50cm2) was evaluated, and its durability over 4000hrs was demonstrated.

  • PDF