• 제목/요약/키워드: Metal-jet

검색결과 115건 처리시간 0.029초

초음속 코히어런트 제트에 관한 기초적 연구 (A Fundamental Study of the Supersonic Coherent Jet)

  • 정미선;조위분;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2139-2144
    • /
    • 2003
  • In steel-making processes of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. The objective of the present study is to investigate the supersonic coherent jet flow. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jet.

  • PDF

초음속 코히어런트 제트에 관한 수치해석적 연구 (A Computational Study of the Supersonic Coherent Jet)

  • 정미선;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.490-495
    • /
    • 2003
  • In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets.

  • PDF

DoD 메탈젯 시스템의 이론적 해석 및 실험적 분석 (Theoretical Analysis and Experimental Characterization of DoD Metal-Jet System)

  • 이택민;강태구;양정순;조정대;김광영;최병오;김동수
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. The theoretical analysis of the metal-jet nozzle system is derived by using electro-mechanical analogy. Based on the theoretical analysis results, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about 65 $\mu$m $\sim$ 70 $\mu$m, 145p1 $\sim$ 180 pl and 4m/s, which shows quite good agreement with the theoretical analysis results of the 75 $\mu$m-diameter and 220 pl-volume of droplet. In comparison with the experimental result, the errors of diameter and volume are 7% $\sim$ 13% and 18 $\sim$ 34%, respectively.

메탈젯용 PZT 액츄에이터 제어기 성능향상에 관한 연구 (A Study on the Performance Improvement of PZT Actuator Controller for Metal Jet)

  • 윤소남;조정대;이택민
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.81-88
    • /
    • 2003
  • A metal jet printing system based on ink jet printing technique is one of the effective equipments for manufacturing elements of display devices, electrical devices, information processing systems, and so on. In order to develop an actuator of the metal jet printing system, bimorph type PZT actuator(length 25.2mm, width 7.2mm, thickness 0.5mm, shim thickness 0.2mm) and its controller(voltage range $\pm24v$, built-in fast recovery diode) were suggested and investigated. Performance tests and characteristic analysis, such as displacement, force, hysteresis and frequency, were carried out. The results show that the suggested actuator and controller are suitable for the metal jet printing system.

  • PDF

금속제트 거동 분석에서의 FTOD 오차 보정에 관한 연구 (A Study on the Correction of Error Induced by FTOD for Investigation of a Metal Jet Behavior)

  • 주재현;이헌주;김시우
    • 한국군사과학기술학회지
    • /
    • 제17권5호
    • /
    • pp.577-584
    • /
    • 2014
  • In this study, the behavior of a shaped charge projectile's metal jet was analyzed using flash radiography. The projectile was installed horizontally to observe the behavior of jet for enough time. While the X-ray tube heads are fixed at one point, the behavior range of the jet is wide in this experimental set up, therefore the angle between the X-ray tube heads and the jet tip is changed continuously as jet moves forward. Jet particle's locations calculated from the X-ray films become different from their real positions under this situation because of the film to object distance(FTOD) and correction for error by FTOD is required. In this study, a method was devised to correct the error by FTOD and this was applied for the investigation of jet behavior of a 70 mm caliber's shaped charge.

Development of Spherical Fine Powders by High-pressure Water Atomization Using Swirl Water Jet (II)

  • Terai, Shinji;Kikukawa, Masato;Inaba, Tsuneta;Koyama, Tadashi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.16-17
    • /
    • 2006
  • In order to obtain spherical fine powder, we have developed a new method of high-pressure water atomization system using swirl water jet with the swirl angle $(\omega)$. The effect of nozzle apex angle $(\theta)$ upon the morphology of atomized powders was investigated. Molten copper was atomized by this method, with $\omega=0.2$ rad (swirl water jet) and $\omega=0$ rad (conical water jet). It was found that the median diameter $(D_{50})$ of atomized powders decreased with decreasing $(\theta)$ down to 0.35 rad in each $\omega$, but under ${\theta}<\;0.35$ rad, $D_{50}$ increased abruptly with decreasing $\theta$ for $\omega=0$ rad, while it was still decreased with decreasing $(\theta)$ for $\omega=0.2$ rad.

  • PDF

과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구 (Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water)

  • 허효;정동욱;방인철
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구 (Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet)

  • 박형규;김동규;김시우;주재현;송우진;김정
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.55-62
    • /
    • 2015
  • 성형작약탄에 의해 발생되는 금속제트에 대전류 펄스가 인가되면 금속제트 내 외부에 전자기장이형성 되고 생성된 전자기장에 의해 전자기력이 작용하여 금속제트를 분산 및 산란시키게 된다. 대전류펄스 인가장치는 RLC 회로로 구성되어 있고 두 전극판 사이로 금속제트가 관통되어 진행할 때 대전류펄스가 흐르게 된다. 본 연구에서는 ALE 기법을 이용한 2 차원 축 대칭 해석을 통해 두 전극판을 통과할 때의 금속제트 단면 형상을 예측하고, 2 차원 해석 모델에서 얻어낸 금속제트 단면을 3 차원 유한요소 모델로 재구성하여 금속제트에 전류를 직접 인가하였다. 또한, 유한요소해석을 통하여 금속제트에 직접적으로 대전류 펄스를 인가시켜 금속제트의 변형된 형상과 발생하는 전자기력을 계산하였으며, 금속제트의 산란을 일으키는데 영향을 주는 대전류 펄스의 주요 설계변수 특성에 대하여 검증하였다.

Experimental Study on the Effect of a Metal Storage Cask and Openings on Flame Temperature in a Compartment Fire

  • Bang, Kyoung-Sik
    • 방사성폐기물학회지
    • /
    • 제18권3호
    • /
    • pp.395-405
    • /
    • 2020
  • Compartment fire tests were performed using kerosene and Jet A-1 as fire sources to evaluate the relationship between flame temperature and opening size. The tests were performed for a fire caused by the release of kerosene owing to vehicle impact, and for a fire caused by the release of Jet-A-1 owing to airplane collision. The compartment fire tests were performed using a 1/3-scale model of a metal storage cask when the flame temperature was deemed to be the highest. We found the combustion time of Jet-A-1 to be shorter than that of kerosene, and consequently, the flame temperature of Jet-A-1 was measured to be higher than that of kerosene. When the opening was installed on the compartment roof, even though the area of the opening was small, the ventilation factor was large, resulting in a high flame temperature and long combustion. Therefore, the position of the opening is a crucial factor that affects the flame temperature. When the metal storage cask was stored in the compartment, the flame temperature decreased proportionally with the energy that the metal storage cask received from the flame.

용융 메탈 잉크젯 시스템 (Molten Metal Inkjet System)

  • 이택민;강태구;양정순;조정대;김광영;김동수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.585-586
    • /
    • 2006
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. Based on the theoretical analysis, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in the high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the Ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about $65-70{\mu}m$, 145-180 pl and 4m/sec. We also fabricate vertical and inclined 3D micro column structures using the present molten metal inkjet system. The measured geometries of the micro column structures are about height of $2,100{\mu}m$, diameter of $200{\mu}m$ and aspect ratio of 10.5 for vertical micro column and $1,400{\mu}m$ of height and $150{\mu}m$ of diameter for $65^{\circ}$-inclined micro column, respectively.

  • PDF