• Title/Summary/Keyword: Metal-jet

Search Result 115, Processing Time 0.026 seconds

A Fundamental Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 기초적 연구)

  • Jeong, Mi-Seon;Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2139-2144
    • /
    • 2003
  • In steel-making processes of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. The objective of the present study is to investigate the supersonic coherent jet flow. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jet.

  • PDF

A Computational Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 수치해석적 연구)

  • Jeong, Mi-Seon;Sanal Kumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.490-495
    • /
    • 2003
  • In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets.

  • PDF

Theoretical Analysis and Experimental Characterization of DoD Metal-Jet System (DoD 메탈젯 시스템의 이론적 해석 및 실험적 분석)

  • Lee, Taik-Min;Kang, Tae-Goo;Yang, Jeong-Soon;Jo, Jeong-Dai;Kim, Kwang-Young;Choi, Byung-Oh;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. The theoretical analysis of the metal-jet nozzle system is derived by using electro-mechanical analogy. Based on the theoretical analysis results, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about 65 $\mu$m $\sim$ 70 $\mu$m, 145p1 $\sim$ 180 pl and 4m/s, which shows quite good agreement with the theoretical analysis results of the 75 $\mu$m-diameter and 220 pl-volume of droplet. In comparison with the experimental result, the errors of diameter and volume are 7% $\sim$ 13% and 18 $\sim$ 34%, respectively.

A Study on the Performance Improvement of PZT Actuator Controller for Metal Jet (메탈젯용 PZT 액츄에이터 제어기 성능향상에 관한 연구)

  • Yun, So-Nam;Jo, Jeong-Dae;Lee, Taek-Min
    • 연구논문집
    • /
    • s.33
    • /
    • pp.81-88
    • /
    • 2003
  • A metal jet printing system based on ink jet printing technique is one of the effective equipments for manufacturing elements of display devices, electrical devices, information processing systems, and so on. In order to develop an actuator of the metal jet printing system, bimorph type PZT actuator(length 25.2mm, width 7.2mm, thickness 0.5mm, shim thickness 0.2mm) and its controller(voltage range $\pm24v$, built-in fast recovery diode) were suggested and investigated. Performance tests and characteristic analysis, such as displacement, force, hysteresis and frequency, were carried out. The results show that the suggested actuator and controller are suitable for the metal jet printing system.

  • PDF

A Study on the Correction of Error Induced by FTOD for Investigation of a Metal Jet Behavior (금속제트 거동 분석에서의 FTOD 오차 보정에 관한 연구)

  • Joo, Jaehyun;Lee, Heonjoo;Kim, Siwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.577-584
    • /
    • 2014
  • In this study, the behavior of a shaped charge projectile's metal jet was analyzed using flash radiography. The projectile was installed horizontally to observe the behavior of jet for enough time. While the X-ray tube heads are fixed at one point, the behavior range of the jet is wide in this experimental set up, therefore the angle between the X-ray tube heads and the jet tip is changed continuously as jet moves forward. Jet particle's locations calculated from the X-ray films become different from their real positions under this situation because of the film to object distance(FTOD) and correction for error by FTOD is required. In this study, a method was devised to correct the error by FTOD and this was applied for the investigation of jet behavior of a 70 mm caliber's shaped charge.

Development of Spherical Fine Powders by High-pressure Water Atomization Using Swirl Water Jet (II)

  • Terai, Shinji;Kikukawa, Masato;Inaba, Tsuneta;Koyama, Tadashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.16-17
    • /
    • 2006
  • In order to obtain spherical fine powder, we have developed a new method of high-pressure water atomization system using swirl water jet with the swirl angle $(\omega)$. The effect of nozzle apex angle $(\theta)$ upon the morphology of atomized powders was investigated. Molten copper was atomized by this method, with $\omega=0.2$ rad (swirl water jet) and $\omega=0$ rad (conical water jet). It was found that the median diameter $(D_{50})$ of atomized powders decreased with decreasing $(\theta)$ down to 0.35 rad in each $\omega$, but under ${\theta}<\;0.35$ rad, $D_{50}$ increased abruptly with decreasing $\theta$ for $\omega=0$ rad, while it was still decreased with decreasing $(\theta)$ for $\omega=0.2$ rad.

  • PDF

Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water (과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구)

  • Heo, Hyo;Jerng, Dong Wook;Bang, In Cheol
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

Numerical Analysis of Intense Electric Current Pulse to Disperse Shaped Charge Metal Jet (성형작약탄 금속제트 산란을 위한 대전류 펄스의 수치해석적 연구)

  • Park, Hyeong Gyu;Kim, Dong Kyu;Kim, Si Woo;Joo, Jae Hyun;Song, Woo Jin;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.55-62
    • /
    • 2015
  • The electromagnetic force induced by an intense electric current pulse, which generates an electromagnetic field around the metal jet originating from a shaped charge, can disperse and scatter the high-speed metal jet. An electric device consisting of an RLC circuit applies an intense electric current pulse that flows in the circuit while the metal jet passes between two electrodes. In this study, the metal jet formation was simulated using the ALE technique in 2-D, and a 3-D finite element model was mapped using 2-D simulation results to induce the electric current directly. The deformed shapes of the metal jet and the electromagnetic force were calculated using a finite element analysis by inducing the electric current directly, and the major parameters of the intense electric current pulse for breaking up the metal jet were examined.

Experimental Study on the Effect of a Metal Storage Cask and Openings on Flame Temperature in a Compartment Fire

  • Bang, Kyoung-Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.395-405
    • /
    • 2020
  • Compartment fire tests were performed using kerosene and Jet A-1 as fire sources to evaluate the relationship between flame temperature and opening size. The tests were performed for a fire caused by the release of kerosene owing to vehicle impact, and for a fire caused by the release of Jet-A-1 owing to airplane collision. The compartment fire tests were performed using a 1/3-scale model of a metal storage cask when the flame temperature was deemed to be the highest. We found the combustion time of Jet-A-1 to be shorter than that of kerosene, and consequently, the flame temperature of Jet-A-1 was measured to be higher than that of kerosene. When the opening was installed on the compartment roof, even though the area of the opening was small, the ventilation factor was large, resulting in a high flame temperature and long combustion. Therefore, the position of the opening is a crucial factor that affects the flame temperature. When the metal storage cask was stored in the compartment, the flame temperature decreased proportionally with the energy that the metal storage cask received from the flame.

Molten Metal Inkjet System (용융 메탈 잉크젯 시스템)

  • Lee Taik-Min;Kang Tae-Goo;Yang Jeong-Soon;Jo Jeong-Dai;Kim Kwang-Young;Kim Dong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.585-586
    • /
    • 2006
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. Based on the theoretical analysis, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in the high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the Ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about $65-70{\mu}m$, 145-180 pl and 4m/sec. We also fabricate vertical and inclined 3D micro column structures using the present molten metal inkjet system. The measured geometries of the micro column structures are about height of $2,100{\mu}m$, diameter of $200{\mu}m$ and aspect ratio of 10.5 for vertical micro column and $1,400{\mu}m$ of height and $150{\mu}m$ of diameter for $65^{\circ}$-inclined micro column, respectively.

  • PDF