• Title/Summary/Keyword: Metal thin film

Search Result 1,247, Processing Time 0.032 seconds

Optical coupling between a side polished fiber and planar waveguide including a thin metal film (측면 연마 광섬유가 금속 박막이 포함된 평면 도파로 사이의 광 결합)

  • 김광택;황중호;이준옥;김상우;강신원;서동일;손재원
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.406-413
    • /
    • 2001
  • We report theoretical and experimental results for the wavelength and polarization selectivity of a fiber-to-planar waveguide coupler made of a side polished single mode fiber covered with a planer waveguide incorporating a thin metal film. A simple but exact approach to obtain the modal properties of multilayer planar waveguide with a thin metal film is described. The device was modeled into equivalent 1 dimensional structure and its behaviour was analyzed based on coupled mode theory. The effects of metal film thickness and refractive index of superstrate on the device properties were measured and explained.

  • PDF

A Research on DLC Thin Film Coating of a SiC Core for Aspheric Glass Lens Molding (비구면 유리렌즈 성형용 SiC 코어의 DLC 코팅에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.28-32
    • /
    • 2010
  • Technical demands for aspheric glass lens formed in market increases its application from simple camera lens module to fiber optics connection module in optical engineering. WC is often used as a metal core of the aspheric glass lens, but the long life time is issued because it fabricated in high temperature and high pressure environment. High hard thin film coating of lens core increases the core life time critically. Diamond Like Carbon(DLC) thin film coating shows very high hardness and low surface roughness, i.e. low friction between a glass lens and a metal core, and thus draw interests from an optical manufacturing industry. In addition, DLC thin film coating can removed by etching process and deposit the film again, which makes the core renewable. In this study, DLC films were deposited on the SiC ceramic core. The process variable in FVA(Filtered Vacuum Arc) method was the substrate bias-voltage. Deposited thin film was evaluated by raman spectroscopy, AFM and nano indenter and measured its crystal structure, surface roughness, and hardness. After applying optimum thin film condition, the life time and crystal structure transition of DLC thin film was monitored.

Metallization of Polymers Modified by Ton-Assisted Reaction (IAR)

  • J.S. Cho;Bang, Wan-Keun;Kim, K.H.;Sang Han;Y.B. Sun;S.K. Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.53-59
    • /
    • 2001
  • Surfaces of PTFE and PVDF were modified by ion-assisted reaction (IAR) in which 1 keV $Ar^{+}$ ions were irradiated on the surface of the polymer with varying ion dose in an oxygen gas environment, and Cu, Pt, Al and Ag thin films were deposited on the modified polymers. Wettability of the modified polymers was largely improved by the formation of hydrophilic groups due to chemical reaction between polymer surface and the oxygen gas during IAR. The change in wettability in the modified polymers was also related to the change in surface morphology and roughness. Adhesion between metal films and polymers modified by IAR was significantly improved, so that no detachment was possible in the $Scotch^{TM}$ tape test. The increase of adhesion strength between the metal film and the modified PVDF was mainly attributed to the formation of hydrophilic groups, which interacted with the metal film. In the case of the modified PTFE, the enhanced adhesion to metal film could be explained by the change in surface morphology together with the formation of hydrophilic groups. The electrical properties of the metal films on the modified polymers were also investigated.

  • PDF

Crystallization of a-Si Induced by Ni-Si oxide source

  • Meng, Z.;Liu, Z.;Zhao, S.;Wu, C.;Wong, M.;Kwok, H.;Xiong, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.985-988
    • /
    • 2008
  • Metal induced crystallization of a-Si with a source of Ni/Si oxide was studied. Its mechanism to induce crystallization was discussed. It was found that new source behaves an effect of self-released nickel and reducing nickel residua, so can provide a wider process tolerance; improve the uniformity and stability of TFTs.

  • PDF

Sol-Gel Processing for Preparation of Metal Oxide Films

  • Korobova Natalya;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.259-264
    • /
    • 2000
  • Systematic research of metal alkoxide electrophoretic deposition has been developed. The formation mechanism of electrophoretic deposits has been offered. The structure study of dry and heat-treated electrophoretic deposits has been established. The concrete examples of one and bi-component oxide thin film formation were considered. The new approaches for thin film technology have developed on various substrates of different shapes and sizes. The correlation between thin film structure, mechanism of their formation, and physico-chemical properties has been determined.

  • PDF

The Effect of Metal-Oxide Coating on the Electrochemical Properties in Thin-Film $LiCoO_2$ Cathodes (금속산화물 코팅을 통한 박막 $LiCoO_2$양극의 전기화학적 특성 향상)

  • 김혜민;김병수;김용정;조재필;박병우
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.124-124
    • /
    • 2003
  • To improve the electrochemical properties of thin-film LiCoO$_2$ cathodes, metal oxides were coated on the LiCoO$_2$ thin films using f sputtering. Galvanostatic charge-discharge experiments showed the enhanced cycling behaviors in the metal-oxide coated LiCoO$_2$ thin films than the uncoated ones. These results are because the metal-oxide coating layer suppresses the degradation of Li-diffusion kinetics during cycling, which is related to the protection of cathode surface from the electrolytes [l-3]. The variation in the metal-oxide coating thickness ranging from 10 to 300 nm did not affect the electrochemical properties. Changes of lattice constants in the coated and bare LiCoO$_2$ thin films at different charged states will also be discussed.

  • PDF

An Evaluation of Physical Properties of Metal Sprayed Coating According to Concrete Surface Treatment Methods (콘크리트 표면 처리 방법에 따른 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Jang, Hyun O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.67-68
    • /
    • 2021
  • Social infrastructure facilities can be destroyed instantly when exposed to EMP (ElectroMagnetic Pulse), causing social chaos. However, concrete structures with low electrical conductivity cannot expect EMP shielding effect. Therefore, in this study, a metal sprayed thin film showing excellent EMP shielding performance was applied to a concrete structure to evaluate the metal spray welding efficiency and adhesion performance of the thin film according to the concrete surface treatment method. As a result according to the concrete surface treatment method, It was confirmed that the use of a roughening agent that generates physical irregularities in order to improve the welding efficiency and adhesion performance increases the physical performance of the concrete and metal sprayed thin film.

  • PDF

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells (AZO 투명 전극 기반 반투명 실리콘 박막 태양전지)

  • Nam, Jiyoon;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

Fabrication and characterization of $SnO_2$ anode thin film for thin film secondary battery (박막형 2차전지용 $SnO_2$음극 박막의 제작 및 특성 평가)

  • 이성준;신영화;윤영수;조원일
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.571-574
    • /
    • 2000
  • In this study, Tin oxide thin film for secondary battery was deposited on Pt/Ti/Si(100). It was fabricated by r.f. reactive sputtering with Tin metal target. At constant power (130W), pressure (Base 5$\times$10$^{-6}$ Torr, working 5$\times$10$^{-3}$ Torr) and at room temperature, it was fabricated by Ar/O2 gas ratio. After deposition, we got AFM & SEM to investigated surface of thin films and had XRD to find crystalline of thin films. Charge/discharge characteristics were carried out in 1M LiPF$_{6}$ , EC:DMC = 1:1 liquid electrolyte using lithium metal at room temperature.

  • PDF