• Title/Summary/Keyword: Metal template synthesis

Search Result 39, Processing Time 0.034 seconds

Synthesis of Mesoporous Zeolite Y and Its Application for Adsorptive Removal of Heavy Metals (Mn2+, Fe2+) (메조 세공 제올라이트 Y 합성 및 이를 이용한 중금속(Mn2+, Fe2+)의 흡착)

  • Pak, Seo-Hyun;Park, Chan-gyu
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.125-132
    • /
    • 2018
  • We studied a simple approach for synthesis of mesoporous Y(M-Y) from commercial zeolite Y precursors by treating of NaOH with $CH_3(CH_2)_{15}N(Br)(CH_3)_3$ as template. The physicochemical properties of the mesoporous zeolites Y were then analyzed using XRD, nitrogen full-isotherms at 77 K, SEM and TEM. The nitrogen adsorption-desorption analysis showed that surface area and pore diameter of synthesized mesoporous zeolite Y(M-Y) were $1072m^2/g$ and ~3.3 nm, respectively. And M-Y was applied for the removal of $Mn^{2+}$ and $Fe^{2+}$ from aqueous solution. This material, which introduces mesoporosity with zeolite Y character, displayed a superior adsorption capacity than commercial zeolite Y when used as an adsorbent for the removal of $Mn^{2+}$ and $Fe^{2+}$.

Syntheses and Properties of New Nickel(II) Complexes of 14-Membered Pentaaza Macrocyclic Ligands with C-Nitro and N-Alkyl Pendant Arms

  • Kang, Shin-Geol;Choi, Jang-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.374-378
    • /
    • 1994
  • Square planar nickel(II) complexes with various 1-alkyl derivatives of the 14-membered pentaaza macrocycle 8-methyl-8-nitro-1,3,6,10,13-pentaazacyclotetradecane can be readily prepared by two-step metal template condensation reactions of ethylenediamine, nitroethane, formaldehyde, and appropriate primary alkylamines. In coordinating solvents the nickel (II) complexes form octahedral species containing two axially coordinated solvent molecules and thus show square planar-octahedral equilibrium. The properties of the pentaaza macrocyclic complexes are considerably different from those of the complexes of analogous hexaaza and tetraaza macrocyclic complexes. Synthesis, characterization, and spectroscopic and chemical properties of the new complexes are described.

Template Synthesis and Characterization of Copper(Ⅱ) Complexes of a Polyaza Non-Macrocyclic or a Bis(macrocyclic) Ligand

  • 강신걸;유기석;정수경;김창수
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.331-334
    • /
    • 1996
  • New copper(Ⅱ) complex of the pentaaza non-macrocyclic ligand 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl)-1,3-diazacyclohexane (2) and a dinuclear copper(Ⅱ) compex of the bis(macrocyclic) ligand 3, in which two 1,5,8,10,12,15-hexaazabicyclo[11.3.11.5]heptadecane subunits are linked together by an ethylene chain through the uncoordinated nitrogen (N10) atoms, have been prepared selectively by the reaction of the metal ion, 1,4,8-triazaoctane, ethylenediamine, and formaldehyde. The dinuclear complex [Cu2(3)]4+ has been also prepared by the reaction of [Cu(2)]2+ with ethylenediamine and formaldehyde. The reaction products largely depend on the molar ratio of the reactants employed. The mononuclear complex or each macrocyclic subunit of the dinuclear complex contains one 1,3-diazacyclohexane ring and has a square-planar geometry with a 5-6-5 or 5-6-5-6 chelate ring sequence. In acidic solution, the copper(Ⅱ) complex of 2 dissociates more slowly than those of other related non-cyclic polyamines.

Composite Materials with MWCNTs and Conducting Polymer Nanorods and their Application as Supercapacitors

  • Liua, Lichun;Yoo, Sang-Hoon;Park, Sung-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • This study demonstrated the synthesis of high-surface-area metal-free carbonaceous electrodes (CE) from anodic aluminum oxide (AAO) templates, and their application as supercapacitors. Multi-walled Carbon nanotubes (MWCNTs) were interwoven into a porous network sheet that was attached to one side of AAO template through a vacuum filtration of the homogeneously dispersed MWCNT toluene solution. Subsequently, the conducting polymer was electrochemically grown into the porous MWCNT network and nanochannels of AAO, leading to the formation of a carbonaceous metal-free film electrode with a high surface area in the given geometrical surface area. Typical conducting polymers such as polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT) were examined as model systems, and the resulting electrodes were investigated as supercapacitors (SCs). These SCs exhibited stable, high capacitances, with values as high as 554 F/g, 1.08 F/$cm^2$ for PPY and 237 F/g, 0.98 F/$cm^2$ for PEDOT, that were normalized by both the mass and geometric area.

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

Synthesis of Organized $TiO_2$ Electrodes Using Graft Copolymer and Their Applications to Dye-Sensitized Solar Cells (가지형 공중합체를 이용한 나노구조 $TiO_2$ 제조 및 염료감응 태양전지 응용)

  • Ahn, Sung Hoon;Koh, Joo Hwan;Park, Jung Tae;Kim, Jong Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • The morphology of mesoporous $TiO_2$ films plays an important role in the operation of a DSSC. For example, the energy conversion efficiency of DSSCs with well-organized mesoporous $TiO_2$ films is much higher than those with traditional films possessing a random morphology. In previous research, well-organized mesoporous $TiO_2$ films have mainly been synthesized using an amphiphilic block copolymer, e.g., a poly(ethylene oxide) (PEO)-based template. A graft copolymer is more attractive than a block copolymer due to its low cost and the ease with which it can be synthesized. In this work, we provide the first report on the successful synthesis of well-organized mesoporous $TiO_2$ films templated by an organized graft copolymer as a structure directing agent. Well-organized mesoporous $TiO_2$ films with excellent channel connectivities were developed via the sol gel processusing an organized PVC-g-POEM graft copolymer synthesized by one-pot ATRP. The careful adjustment of copolymer composition and solvent affinity using a THF/$H_2O$/HCl mixture was used to systematically vary the material structure. The influence of the material structure on solar cell performance was then investigated. A solid-state DSSC employing both the graft copolymer templated organized 700 nm-thick $TiO_2$ films and graft copolymer electrolytes exhibited a solar conversion efficiency of 2.2% at 100 $mW/cm^2$. This value was approximately two-fold higher than that attained from a DSSC employing a random mesoporous $TiO_2$ film. The solar cell performance was maximized at 4.6% when the film thickness was increased to $2.5{\mu}m$. We believe that this graft copolymer-directed approach introduces a new and simple route toward the synthesis of well-organized metal oxide films as an alternative to a conventional block copolymer-based template.

  • PDF

Dielectric/Magnetic Nanowires Synthesized by the Electrospinning Method for Use as High Frequency Electromagnetic Wave Absorber

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.14-14
    • /
    • 2009
  • High frequency electromagnetic(EM) waves are increasingly being applied in industries because of saturationat lower frequency bands as a result of huge demand. However, electromagneticinterference (EMI) has become a serious problem, and as a result, highfrequency EM absorbers are now being extensively studied. Also, recentdevelopments in absorber technology have focused on producing absorbers thatare thin, flexible, and strong. Hence, one-dimension ferrous nano-materials area potential research field, because of their interesting electronic andmagnetic properties. Commercially, EM wave absorbing products are made ofcomposites, which blend the insulating polymer with magnetic fillers. Inparticular, the shape of the magnetic fillers, such flaky, acicular, or fibrousmagnetic metal particles, rather than spherical, is essential for synthesizingthin and lightweight EM wave absorbers with higher permeability. High aspectratio materials exhibit a higher permeability value and therefore betterabsorption of the EM wave, because of electromagnetic anisotropy. Nanowires areusually fabricated by drawing, template synthesis, phase separation, selfassembly, and electrospinning with a thermal treatment and reduction process.Producing nanowires by the electrospinning method involves a conventionalsol-gel process that is simple, unique, and cost-effective. In thispresentation, Magnetic nanowire and dielectric materials coated magneticnanowire with a high aspect ratio were successfully synthesized by theelectrospinning process with heat treatment and reduction. In addition toestimating the EM wave absorption ability of the synthesized magnetic anddielectric materials coated magnetic nanowire with a network analyzer, weinvestigated the possibility of using these nanowires as high-frequency EM waveabsorbers. Furthermore, a wide variety of topics will be discussed such as thetransparent conducting nanowire and semiconducting nanowire/tube with theelectrospinning process.

  • PDF

Synthesis of Graphene Nanoribbon via Ag Nanowire Template

  • Lee, Su-Il;Kim, Yu-Seok;Song, U-Seok;Kim, Seong-Hwan;Jeong, Sang-Hui;Park, Sang-Eun;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.565-565
    • /
    • 2012
  • 그래핀(Graphene) 기반의 전계효과 트랜지스터(Field effect transistor) 응용에 있어, 가장 핵심적인 도전과제중 하나는 에너지 밴드갭(Energy bandgap)을 갖는 그래핀 채널의 제작이다. 그래핀은 에너지 밴드갭이 존재하지 않는 반금속(semi metal)의 특성을 지니고 있어, 그 본래의 물리적 특성을 지니고서는 소자구현에 어려움이 있다. 그러나 폭이 수~수십 나노미터인 그래핀 나노리본(Graphene nanoribbon)의 경우 양자구속효과(Quantum confinement effect)에 의하여 에너지 밴드갭이 형성되며, 갭의 크기는 리본의 폭에 반비례한다는 연구결과가 보고된 바 있다. 이러한 이유에서, 효과적이며 실현가능한 그래핀 나노리본의 제작은 필수적이다. 본 연구에서는 은 나노 와이어(Ag nanowire)를 기반으로 한 그래핀 나노리본의 합성을 연구하였다. 은 나노와이어를 열화학 기상증착법(Thermal chemical vapor deposition)을 이용, 아세틸렌(Acetylene, C2H2) 가스를 탄소공급원으로 하여 그래핀을 나노와이어 표면에 합성하였다. 합성과정에서 구조에 영향을 미치는 요인인 합성온도와 가스의 비율, 압력 등을 조절하여 최적화된 합성조건을 확립하였다. 합성된 나노리본의 특성을 라만분광법(Raman spectroscopy)과 주사전자 현미경(Scanning electron microscopy), 투과전자현미경(Transmission electron microscopy), 원자힘 현미경(Atomic force microscopy)를 통하여 분석하였다.

  • PDF

Template-Assisted Electrochemical Growth of Hydrous Ruthenium Oxide Nanotubes

  • Cho, Sanghyun;Liu, Lichun;Yoo, Sang-Hoon;Jang, Ho-Young;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1462-1466
    • /
    • 2013
  • We demonstrate that ruthenium oxide ($RuO_2$) nanotubes with controlled dimensions can be synthesized using facile electrochemical means and anodic aluminum oxide (AAO) templates. $RuO_2$ nanotubes were formed using a cyclic voltammetric deposition technique and an aqueous plating solution composed of $RuCl_3$. Linear sweep voltammetry (LSV) was used to determine the effective electrochemical oxidation potential of $Ru^{3+}$ to $RuO_2$. The length and wall thickness of $RuO_2$ nanotubes can be adjusted by varying the range and cycles of the electrochemical cyclic voltammetric potentials. Thick-walled $RuO_2$ nanotubes were obtained using a wide electrochemical potential range (-0.2~1 V). In contrast, an electrochemical deposition potential range from 0.8 to 1 V produced thin-walled and longer $RuO_2$ nanotubes in an identical number of cycles. The dependence of wall thickness and length of $RuO_2$ nanotubes on the range of cyclic voltammetric electrochemical potentials was attributed to the distinct ionic diffusion times. This significantly improves the ratio of surface area to mass of materials synthesized using AAO templates. Furthermore, this study is directive to the controlled synthesis of other metal oxide nanotubes using a similar strategy.