DOI QR코드

DOI QR Code

Template-Assisted Electrochemical Growth of Hydrous Ruthenium Oxide Nanotubes

  • Cho, Sanghyun (Department of Energy Science, Sungkyunkwan University) ;
  • Liu, Lichun (Department of Chemistry, Sungkyunkwan University) ;
  • Yoo, Sang-Hoon (Department of Energy Science, Sungkyunkwan University) ;
  • Jang, Ho-Young (Department of Energy Science, Sungkyunkwan University) ;
  • Park, Sungho (Department of Energy Science, Sungkyunkwan University)
  • Received : 2013.01.22
  • Accepted : 2013.02.18
  • Published : 2013.05.20

Abstract

We demonstrate that ruthenium oxide ($RuO_2$) nanotubes with controlled dimensions can be synthesized using facile electrochemical means and anodic aluminum oxide (AAO) templates. $RuO_2$ nanotubes were formed using a cyclic voltammetric deposition technique and an aqueous plating solution composed of $RuCl_3$. Linear sweep voltammetry (LSV) was used to determine the effective electrochemical oxidation potential of $Ru^{3+}$ to $RuO_2$. The length and wall thickness of $RuO_2$ nanotubes can be adjusted by varying the range and cycles of the electrochemical cyclic voltammetric potentials. Thick-walled $RuO_2$ nanotubes were obtained using a wide electrochemical potential range (-0.2~1 V). In contrast, an electrochemical deposition potential range from 0.8 to 1 V produced thin-walled and longer $RuO_2$ nanotubes in an identical number of cycles. The dependence of wall thickness and length of $RuO_2$ nanotubes on the range of cyclic voltammetric electrochemical potentials was attributed to the distinct ionic diffusion times. This significantly improves the ratio of surface area to mass of materials synthesized using AAO templates. Furthermore, this study is directive to the controlled synthesis of other metal oxide nanotubes using a similar strategy.

Keywords

References

  1. Galizzioli, D.; Tantardini, F.; Trasatti, S. Journal of Applied Electrochemistry 1974, 4, 57. https://doi.org/10.1007/BF00615906
  2. Over. H. Chem. Rev. 2012, 12, 3356.
  3. Kim, S.; Kim, B.; Jeong, H. G.; Rhee, C. K.; Lim, T. H. Bull. Korean Chem. Soc. 2010, 31, 3852. https://doi.org/10.5012/bkcs.2010.31.12.3852
  4. Zhang, J.; Ma, J.; Zhang, L. L.; Guo, P.; Jiang, J.; Zhao, X. S. J. Phys. Chem. C 2010, 114, 13608. https://doi.org/10.1021/jp105146c
  5. Zhang, Q.; Chakraborty, A. K.; Lee, W. I. Bull. Korean Chem. Soc. 2009, 30, 227. https://doi.org/10.5012/bkcs.2009.30.1.227
  6. Phok, S.; Rajaputra, S. Nanotechnology 2007, 18, 475601. https://doi.org/10.1088/0957-4484/18/47/475601
  7. Tasaltin, N.; Ozturk, S.; Kilinc, N.; Yuzer, H.; Ozturk, Z. Z. Nanoscale Res. Lett. 2010, 1.
  8. Liu, R.; Lee, S. B. J. Am. Chem. Soc. 2008, 130, 2942. https://doi.org/10.1021/ja7112382
  9. Jung, J. S.; Malkinski, L.; Lim, J. H.; Yu, M.; O'Connor, C. J.; Lee, H. O.; Kim, E. M. Bull. Korean Chem. Soc. 2008, 29, 758. https://doi.org/10.5012/bkcs.2008.29.4.758
  10. Kim, S.; Shuford, K. L.; Bok, H.-M.; Kim, S. K.; Park, S. Nano Lett. 2008, 8, 800. https://doi.org/10.1021/nl0726353
  11. Bok, H. M.; Shuford, K. L.; Kim, S.; Kim, S. K.; Park, S. Nano Lett. 2008, 8, 2265. https://doi.org/10.1021/nl800924r
  12. Oh, M. K.; Baik, H. J.; Kim, S. K.; Park, S. J. Mater. Chem. 2011, 21, 19069. https://doi.org/10.1039/c1jm13613e
  13. Bok, H.-M.; Shuford, K. L.; Jeong, E.; Park, S. Chem. Comm. 2010, 46, 982. https://doi.org/10.1039/b918510k
  14. Yoo, S. H.; Park, S. Adv. Mater. 2007, 19, 1612. https://doi.org/10.1002/adma.200602551
  15. Park, S.; Chung, S. W.; Mirkin, C. A. J. Am. Chem. Soc. 2004, 126, 11772. https://doi.org/10.1021/ja046077v
  16. Kim, S.; Kim, S. K.; Park, S. J. Am. Chem. Soc. 2009, 131, 8380. https://doi.org/10.1021/ja903093t
  17. Park, S.; Lim, J.-H.; Chung, S.-W.; Mirkin, C. A. Science 2004, 203, 348.
  18. Liu, L.; Yoo, S.-H.; Park, S. Chem. Mater. 2010, 22, 2681. https://doi.org/10.1021/cm100418w
  19. Liu, L.; Park, S. Chem. Mater. 2011, 23, 1456. https://doi.org/10.1021/cm103013z
  20. Shin, T.-Y.; Yoo, S.-H.; Park, S. Chem. Mater. 2008, 20, 5682. https://doi.org/10.1021/cm800859k
  21. Liu, L.; Yoo, S.-H.; Lee, S. A.; Park, S. Cryst. Growth Des. 2011, 11, 3731. https://doi.org/10.1021/cg2007809
  22. Liu, L.; Yoo, S.-H.; Lee, S. A.; Park, S. Nano Lett. 2011, 11, 3979. https://doi.org/10.1021/nl202332x
  23. Laocharoensuk, R.; Sattayasamitsathit, S.; Burdick, J.; Kanatharana, P.; Thavarungkul, P.; Wang, J. ACS Nano 2007, 1, 403. https://doi.org/10.1021/nn700255x
  24. Hu, C.-C.; Chang, K.-H.; Lin, M.-C.; Wu, Y.-T. Nano Lett. 2006, 6, 2690. https://doi.org/10.1021/nl061576a
  25. Yoo, S.-H.; Liu, L.; Park, S. J. Colloid. Interf. Sci. 2009, 339, 183. https://doi.org/10.1016/j.jcis.2009.07.049
  26. Sprycha, R. J. Colloid. Interf. Sci. 1989, 127, 1. https://doi.org/10.1016/0021-9797(89)90002-7
  27. Sprycha, R. J. Colloid. Interf. Sci. 1989, 127, 12. https://doi.org/10.1016/0021-9797(89)90003-9
  28. Regalbuto, J. R.; Navada, A.; Shadid, S.; Bricker, M. L.; Chen, M. L. J. Catal. 1999, 184, 335. https://doi.org/10.1006/jcat.1999.2471
  29. Agashe, K. B.; Regalbuto, J. R. J. Colloid. Interf. Sci. 1997, 185, 174. https://doi.org/10.1006/jcis.1996.4493
  30. Burke, L. D.; Murphy, O. J.; O'Neill, J. F.; Venkatesan, S. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1977, 73, 1659.
  31. Mondal, S. K.; Munichandraiah, N. Journal of Power Sources 2008, 175, 657. https://doi.org/10.1016/j.jpowsour.2007.08.104
  32. Kim, K. S.; Winograd, N. J. Catal. 1974, 35, 66. https://doi.org/10.1016/0021-9517(74)90184-5
  33. Bico, J.; Roman, B.; Moulin, L.; Boudaoud, A. Nature 2004, 432, 690. https://doi.org/10.1038/432690a
  34. Hill, J. J.; Haller, K.; Gelfand, B.; Ziegler, K. J. ACS Appl. Mater. Inter. 2010, 2, 1992. https://doi.org/10.1021/am100290z

Cited by

  1. The Effect of Preparation Parameters in Thermal Decomposition of Ruthenium Dioxide Electrodes on Chlorine Electro-Catalytic Activity vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10275
  2. Li-rich embossed hollow nanorod film for a cathode material vol.67, pp.4, 2015, https://doi.org/10.3938/jkps.67.728
  3. Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors vol.7, pp.30, 2015, https://doi.org/10.1021/acsami.5b04360