• 제목/요약/키워드: Metal support

검색결과 456건 처리시간 0.024초

Revealing Strong Metal Support Interaction during CO Oxidation with Metal Nanoparticle on Reducible Oxide Substrates

  • Park, Dahee;Kim, Sun Mi;Qadir, Kamran;Park, Jeong Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.264-264
    • /
    • 2013
  • Strong metal-support interaction effect is an important issue in determining the catalytic ac-tivity for heterogeneous catalysis. In this study, we investigated the support effect and the role of organic capping layers of two-dimensional Pt nanocatalysts on reducible metal oxide supports under the CO oxidation. Several reducible metal oxide supports including CeO2, Nb2O5, and TiO2 thin films were prepared via sol-gel techniques. The structure, chemical state and optical property were characterized using XRD, XPS, TEM, SEM, and UV-VIS spectrometer. We found that the reducible metal oxide supports have a homogeneous thin thickness and crystalline structure after annealing at high temperature showing the different optical band gap energy. Langmuir-Blodgett technique and arc plasma deposition process were employed to ob-tain Pt nanoparticle arrays with capping and without capping layers, respectively on the oxide support to assess the role of the supports and capping layers on the catalytic activity of Pt catalysts under the CO oxidation. The catalytic performance of CO oxidation over Pt supported on metal oxide thin films under oxidizing reaction conditions (40 Torr CO and 100 Torr O2) was tested. The results show that the catalytic activity significantly depends on the metal oxide support and organic capping layers of Pt nanoparticles, revealing the strong metal-support interaction on these nanocatalysts systems.

  • PDF

Oxidation Behaviors of Porous Ferritic Stainless Steel Support for Metal-supported SOFC

  • Moon, I.J.;Lee, J.W.;Cho, H.J.;Choi, G.M.;Sohn, H.K.
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.196-200
    • /
    • 2010
  • Recently porous metal has been used as supporting metal in planar type SOFC. In order to search optimum alloys for porous metal support and estimate the stability of metal-supported SOFC at high temperature, it is necessary to investigate the oxidation behaviors of porous material for metal support in comparison with dense material. Oxidation tests of porous and dense stainless steels were conducted at $600^{\circ}C$ and $800^{\circ}C$. Since the specific surface area of porous material is much larger than that of dense material, surface area should be considered in order to compare the oxidation rate of porous stainless steel with that of dense stainless steel. The specific surface area of porous body was measured using image analyzer. The weight gain of porous stainless steel was much greater than those of dense stainless steels due to its larger specific surface area. considering the specific surface area, the oxidation rate of porous stainless steel is likely to be the same as that of dense stainless steel with the same surface area. The change in chromium content in stainless steel during oxidation was also investigated. The experimental result in chromium content in stainless steel during oxidation corresponded with the calculated value. While the change in chromium content in dense stainless steel during oxidation is negligible, chromium content in porous stainless steel rapidly decreases with oxidation time due to its large specific surface area. The significant decrease in chromium content in porous stainless steel during oxidation may affect the oxidation resistance of porous stainless steel support and long term stability of metal-supported SOFC.

A Novel Metal Supported SOFC Fabrication Method Developed in KAIST: a Sinter-Joining Method

  • Bae, Joongmyeon
    • 한국세라믹학회지
    • /
    • 제53권5호
    • /
    • pp.478-482
    • /
    • 2016
  • Metal-supported SOFCs have been investigated to overcome the disadvantages of ceramic-supported SOFCs, including issues related to mechanical strength and sealing. In the case of ceramic-supported cells, the mechanical support is a brittle ceramic or cermet, and it contains expensive materials. However, metal-supported cells utilize ceramic layers that are only as thick as necessary for electrochemical functioning, thereby compensating for the disadvantages of ceramic-supported cells. The mechanical support is fabricated from inexpensive and robust metals, and the electrochemically active layers are applied directly to the metal support. The metal-supported SOFCs thus can provide a reduced system cost, ease of manufacturing, and operational advantages. Owing to these features, metal-supported SOFCs are a very promising candidate for commercialization. Given the importance of studying worldwide trends in metal-supported SOFC research for performance evaluation, this paper reviews development trends with a focus on fabrication methods. Furthermore, a novel fabrication method developed in KAIST is discussed.

Effect of Support of Two-Dimensional Pt Nanoparticles/Titania on Catalytic Activity of CO Oxidation

  • Qadir, Kamran;Kim, Sang-Hoon;Kim, S.M.;Reddy, A.S.;Jin, S.;Ha, H.;Park, Jeong-Y.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.246-246
    • /
    • 2012
  • Smart catalyst design though novel catalyst preparation methods can improve catalytic activity of transition metals on reducible oxide supports such as titania by enhancement of metal oxide interface effects. In this work, we investigated Pt nanoparticles/titania catalysts under CO oxidation reaction by using novel preparation methods in order to enhance its catalytic activity by optimizing metal oxide interface. Arc plasma deposition (APD) and metal impregnation techniques are employed to achieve Pt metal deposition on titania supports which are prepared by multi-target sputtering and Sol-gel techniques. In order to tailor metal-support interface for catalytic CO oxidation reaction, Pt nanoparticles and thin films are deposited in varying surface coverages on sputtered titania films using APD. To assess the role of oxide support at the interface, APD-Pt is deposited on sputtered and Sol-gel prepared titania films. Lastly, characteristics of APD-Pt process are compared with Pt impregnation technique. Our results show that activity of Pt nanoparticles is improved when supported over Sol-Gel prepared titania than sputtered titania film. It is suggested that this enhanced activity can be partly ascribed to a very rough titania surface with the higher free metal surface area and higher number of sites at the interface between the metal and the support. Also, APD-Pt shows superior catalytic activity under CO oxidation as compared to Pt impregnation on sputtered titania support. XPS results show that bulk oxide is formed on Pt when deposited through impregnation and has higher proportion of oxidized Pt in the form of $Pt^{2+/4+}$ oxidation states than Pt metal. APD-Pt shows, however, mild oxidation with large proportion of active Pt metal. APD-Pt also shows trend of increasing CO oxidation activity with number of shots. The activity continues to increase with surface coverage beyond 100%, thus suggesting a very rough and porous Pt films with higher active surface metal sites due to an increased surface area available for the reactant CO and $O_2$ molecules. The results suggest a novel approach for systematic investigation into metal oxide interface by rational catalysts design which can be extended to other metal-support systems in the future.

  • PDF

금속지지체식 SOFC 제작 및 평가 (Fabrication and Evaluation of Metal-Supported SOFC)

  • 최진혁;이태희;최미화;유영성
    • 한국수소및신에너지학회논문집
    • /
    • 제22권1호
    • /
    • pp.77-82
    • /
    • 2011
  • In this study, a metal-supported SOFC was fabricated using a relatively cheap and simple process. The adhesion process between ceramic cell and metal support was performed in high temperature over $1400^{\circ}C$ and the deformation of large metal-supported cell happened in this process. Using bi-layered metal support fabricated by diffusion bonding, the deformation of the metal-supported cell can be minimized and the sealing efficiency of anode and cathode was improved. The flatness of the cell was improved by over 20% and the maximum power density of over 0.5 $Wcm^{-2}$ was obtained at the operation condition of $800^{\circ}C$.

고분자 전해질 다층박막을 이용한 과산화수소 직접제조 반응 중 활성금속 용출 억제 방법 (A Method for Suppression of Active Metal Leaching during the Direct Synthesis of H2O2 by Using Polyelectrolyte Multilayers)

  • 정영민
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.262-268
    • /
    • 2015
  • 본 연구에서는 일반적인 귀금속 담지법과 담체 위에 형성한 고분자 전해질 다층 박막 내에 귀금속을 내포시키는 방법으로 촉매를 제조하고, 과산화수소 직접제조 반응에 적용하여 촉매의 제조 방법이 과산화수소 생산성 및 촉매 수명에 미치는 영향을 조사하였다. 촉매의 활성은 제조 방법에 상관없이 담체의 산세기에 크게 의존하였으며, 사용한 담체들 중 산세기가 가장 강한 HBEA(SAR=25)를 사용한 경우가 활성이 가장 우수하였다. 단순 귀금속 담지 촉매는 고분자 전해질 다층 박막을 도입한 촉매보다 과산화수소 생산성은 우수하였으나, 반응 중 활성 금속인 Pd의 용출로 인해 재사용 횟수가 증가할 때마다 활성이 급격히 감소하였다. 한편, 고분자 전해질 다층 박막의 도입은 산성 담체의 역할을 약화시켜 촉매 활성은 감소하고 과산화수소 분해능은 증가하여 전체적으로 과산화수소의 생산성이 감소되는 결과를 가져왔다. 하지만, 5회에 걸친 재사용 동안에도 촉매 활성이 유지되었으며, 이러한 비약적인 촉매 수명의 향상은 담체 위에 고분자 전해질 다층 박막을 도입하는 것이 반응 중 활성 금속의 용출 억제 측면에서 매우 효과적이라는 것을 시사한다.

대면적 후곡판 성형을 위한 블랭크 지지구조 설계 (Design of Blank Support Structure for Large and Curved Thick Plate Forming)

  • 곽봉석;윤만중;전재영;강범수;구태완
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.18-27
    • /
    • 2018
  • As one of the functional metal parts in steam turbine diaphragm assembly, the hollow-partitioned turbine nozzle (stator) has large and thick geometries, as well as an asymmetric configuration. Therefore it is hard to support a metal blank in the die cavity. To ease this situation and control posture and position of metal blank (workpiece), a blank support structure is newly introduced. The blank support structure is basically composed of enlarged arms from the blank, guide pins and linear bearings. It can help to control the intermediate blank without a critical sliding phenomenon. The operation mechanism of this blank support structure, during thick plate forming for the hollow-partitioned turbine nozzle stator, is first evaluated. A series of FEM-based numerical simulations, with respect to the width of the guide arm as geometric design parameters, are carried out to investigate its applicable range. As the results, it is observed the blank support structure for this thick plate forming can guide the workpiece to have stable posture during the plate forming process.

금속 적층제조에서의 서포트 설계변수에 따른 강성 분석 (Stiffness analysis according to support design variables in the metal additive manufacturing process)

  • 문인용;송영환
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.268-275
    • /
    • 2023
  • 적층제조 기술의 지속적 발전 및 적용 산업의 확대에 따라 제조된 금속 부품의 전반적인 품질 및 성능을 향상 시키기 위한 서포트 최적 설계 수행은 필수적이 되었다. 따라서 본 논문은 금속 적층제조 공정에서의 서포트 설계변수가 서포트 강성에 미치는 영향을 분석하였다. 대표적인 서포트 설계변수인 서포트 종류, 간격, 침투 깊이를 다양하게 적용한 인장시편을 적층제조를 통해 제작하고, 이에 대한 인장시험을 통해 변위-하중 곡선의 차이를 분석하였다. 그 결과를 바탕으로 서포트 설계변수가 지지 강성에 미치는 영향에 대한 포괄적인 분석을 제시하였다. 이를 통해 적층제조 공정 중 금속 부품의 열 변형을 억제하기 위한 서포트 최적설계 수행을 효과적으로 할 수 있을 것이라 기대된다.

합성가스 생산을 위한 복합개질 반응에서 $Ni/MgO-Al_2O_3$ 촉매의 탄소 침적 저항성 향상에 관한 연구 (Enhancement of coke resistance on Ni/MgO-$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for the syngas production)

  • 구기영;노현석;정운호;윤왕래
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.727-730
    • /
    • 2009
  • Highly active and stable nano-sized Ni catalysts supported on MgO-$Al_2O_3$ calcined from hydrotalcite-like materials have been successfully developed with a strong metal to support interaction (SMSI) to enhance the coke resistance in combined $H_2O$ and $CO_2$ reforming of $CH_4$ (CSCRM) for syngas ($H_2$/CO=2) production. The change of the surface area and NiO crystallite size with varying the pre-calcination temperature of support and Mgo content was investigated in relation to the coke resistance. As increasing the pre-calcination temperature, the surface area decreases and the metal to support interaction becomes weak. As a consequence, the coke deposition was more severe on catalysts pre-calcined at high temperature. It was concluded that highly dispersed Ni metal in the surface of Ni/MgO-$Al_2O_3$ catalyst (MgO=30 wt%) pre-calcined at $800^{\circ}C$ had a strong metal to support interaction (SMSI) resulting in an increase of coke resistance and high activity.

  • PDF

신구조 금속지지체형 고체산화물 연료전지 (Study on metal-supported solid oxide fuel cells)

  • 이창보;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.129-132
    • /
    • 2007
  • Advanced structure of metal-supported solid oxide fuel cells was devised to overcome sealing problem and mechanical instability in ceramic-supported solid oxide fuel cells. STS430 whose dimensions were 26mm diameter, 1mm thickness and 0.4mm channel width was used as metal support. Thin ceramic layer composed of anode(Ni/YSZ) and electrolyte(YSZ) was joined with STS430 metal support by using a cermet adhesive. $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_{3}$ perovskite oxide was used as cathode material. It was noted that oxygen reduction reaction of cathode governed the overall cell performance from oxygen partial pressure dependance.

  • PDF