• Title/Summary/Keyword: Metal spray system

Search Result 47, Processing Time 0.022 seconds

Evaluation of the Adhesion Strength of Metal Spray Coating System in Steel using High-frequency Arc Metal Spray Method (고주파 아크 금속용사기를 이용한 금속용사 코팅계의 부착강도 평가)

  • Choe, Hong-Bok;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.96-97
    • /
    • 2014
  • The purpose of this study is to analyze the adhesion strength of metal spray coating system in steel using high-frequency arc metal spray method. For the purpose the experimental factor such as surface roughness was selected at 3 levels. As a result of experiment, it appeared that high-frequency arc metal spray method had higher adhesion strength than existing metal spray method. Especially, Al-Mg showed the highest adhesion strength than other metals. In case of surface roughness, the higher roughness steel has, the higher adhesion strength appeared.

  • PDF

An Experimental Study on the Permeability Evaluation of Metal Spray System by Metal Spray Coating Surface Treatment (콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Jang, Hyun-O;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.50-51
    • /
    • 2016
  • Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

Corrosion Protection of Steel by Applying a Zn-Sn Metal Spray System (Zn-Sn 합금을 이용한 강구조물의 금속용사공법 방식성능평가 연구)

  • Ryu, Hwa-Sung;Jeong, Dong-Geun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.505-513
    • /
    • 2014
  • The purpose of this study is to evaluate the corrosion protective properties of a Zn-Sn metal spray method according to the contents of Zn and Sn by a CASS test and the electrochemical theory. In the experiment, the CASS test and the electrochemical test were conducted to investigate the corrosion protective property of the Zn-Sn Metal Spray system, the Zinc galvanizing system, and the heavy duty coating system. As a result, it was confirmed that the Zn-Sn (65:35) Metal Spray system had very high corrosion protective property through the electrochemical characteristic as comparison with the other anti-corrosion systems and was very effective to prevent steel products from corrosion.

An Experimental Study on the Permeability Evaluation of Metal Spray System by Concrete Surface Treatment (콘크리트 표면처리방법에 따른 금속용사 피막의 투수성 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.34-35
    • /
    • 2015
  • Recently, introduction of Advanced water treatment facilities has been increasing due to serious domestic water pollution. Ozone is a strong oxidizing materials in the advanced water treatment facilities. However, due to such a strong oxidation, Ozone eroded waterproofing/corrosion on the concrete surface and caused performance degradation. Therefore, in this study, permeability experiment of metal spraying system by concrete surface treatment was conducted.

  • PDF

Fabrication of Al/Al-SiC Composites by Thermal Spray Process (용사법에 의한 Al/Al-SiC 복합재료의 제조)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • Metal matrix composites(MMCs) reinforced with ceramic particulates are receiving increasing attention because their high specific strength, low coefficient of thermal expansion and excellent wear resistance. Especially, Al-based composites(AMCs) have been widely applied for the aerospace and automotive industries. Such composites are mainly fabricated by the cast, powder metallurgy and infiltration process. In this study, SiC particulate reinforced Al-based composites were fabricated by thermal spray process and their wear behavior were investigated. Composites with different spray parameter were fabricated by using flame spray apparatus. Microstructure and wear behavior of the composites were observed by scanning electron microscope(SEM) and electron probe micro-analysis(EPMA).

  • PDF

Effect of Flame Spray Distance on Particle Behavior and Morphological Characteristics of $Ni_{20}Cr$ Coated Layers (화염용사 거리에 따른 입자의 거동 및 $Ni_{20}Cr$ 코팅층 특성 연구)

  • Lee, Jae Bin;Shin, Dong Hwan;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.128-133
    • /
    • 2012
  • The present study aims to examine the influence of flame spray distance on the thermal behavior of micro-metal particles and the morphological characteristics of $Ni_{20}Cr$ layers coated on the preheated SCM415 substrates by using the conventional flame spray system. Commercially available nickel-based $Ni_{20}Cr$ particles with a mean diameter of $45{\mu}m$ were used. In addition, CFD simulations using a commercial code (FLUENT ver. 6.3.26) were conducted to estimate temperature and velocity distributions of the continuous and discrete phases before impact on the substrate. From FE-SEM images of coated layers on the substrates, it was observed that as the spray distance decreased, the metal particle morphology showed splash-like patterns and such a short stretch shape, resulting from higher particle momentums and the impact of partially melted particles. Moreover, it was found that the spray distance should be considered as one of important parameters in controlling the porosity and the adhesion strength.

Effect of High Injection Pressure and Ambient Pressure on the DME Spray Characteristics Injected Through a Common-rail Diesel Injector (커먼레일 디젤 인젝터에서 연료 분사 및 분위기 압력이 DME 분무 특성에 미치는 영향)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • The aim of this investigation is to study the effect of the high injection pressure on the dimethyl ether (DME) spray characteristics injected through a common-rail diesel injector under various ambient pressures. In order to investigate the effect of the injection pressure and ambient condition, the common-rail injection system with two high pressure pumps and high pressure chamber pressurized up to 40 bar were used, respectively. Spray images of DME fuel obtained from a visualization system composed of high speed camera and two metal halide lamps as the light source. From the obtained images, the spray behaviors such as a spray development process, spray tip penetration, spray width, and spray cone angle were measured for analyzing the DME spray characteristics under various experimental conditions. It was found that the spray development slowed as the ambient pressure increased and spray tip penetration at injection pressure of 90 MPa is longer than that at 50 MPa. In addition, the spray width at the end stage of injection decreased under the atmospheric conditions due to the evaporation property of DME fuel, and DME spray shows narrow spray cone angle according to the injection pressure increased.

  • PDF

Experimental and Numerical Investigation on DME Spray Characteristics as a Function of Injection Timing in a High Pressure Diesel Injector (고압 분사 인젝터의 분사 시기에 따른 DME 분무특성에 관한 실험 및 해석적 연구)

  • Kim, Hyung-Jun;Park, Su-Han;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.3
    • /
    • pp.109-116
    • /
    • 2009
  • The purpose of this study is the experimental and numerical investigation on the DME spray characteristics in the combustion chamber according to the injection timing in a common-rail injection system. The visualization system consisted of the high speed camera with metal halide lamp was used for analyzing the spray characteristics such as spray development processes and the spray tip penetration in the free and in-cylinder spray under various ambient pressure. In order to observe the spray characteristics as a function of injection timing, the piston head shape of re-entrant type was created and the fuel injected into the chamber according to various distance between nozzle tip and piston wall in consideration of injection timing. Also, the spray and evaporation characteristics in the cylinder was calculated by using KlVA-3V code for simulating spray development process and spray tip penetration under real engine conditions. It was revealed that the high ambient pressure of 3 MPa was led to delay the spray development and evaporation of DME spray. In addition, injected sprays after BTDC 20 degrees entered the bowl region and the spray at the BTDC 30 degrees was divided into two regions. In the calculated results, the liquefied spray tip penetration and fuel evaporation were shorter and more increased as the injection timing was retarded, respectively.

  • PDF

Development for Finishing Method of Concrete Structures Applying Metal Spraying System (금속용사 시스템을 이용한 콘크리트 구조물의 마감공법 개발)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1225-1228
    • /
    • 2001
  • The purpose of this study is to develop for finishing method of concrete structures applying metal spraying system. In the experiments, the pull out tests were conducted using the specimen which was applied by various surface treatment of concrete substrate. As a result, it was confirmed that the adhesion strength of metal spray was effected by surface condition of concrete and the construction of primer or the coarse surface agent to the concrete substrate is very effective to the new finishing method of concrete for the metal spraying system.

  • PDF

Modeling of Metal Transfer in GMA Welding Process (용융부의 형상을 고려한 GMA 용접 공정의 금속이행 모델링)

  • 이강희;최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 1995
  • As the metal transfer in the GMAW process affects the weld quality and productivity, the mechanism of molten formation and detachment has been investigated at various welding conditions. The force balance and pinch instability models have been widely used to analyze the metal transfer in the globular and spray modes, respectively A new approach is proposed in this work by minimizing the energy of molten drop system. Effects of the surface tension, gravity, electromagnetic and drag forces are considered with no presumed molten drop geometry. Effects of various welding conditions on the metal transfer are explained. The results show that the proposed mode can be applied to the globular and spray transfer modes. When compared with other models, results of the proposed model show better agreements with the available experimental data, which demonstrates the validity of the present model.

  • PDF