• Title/Summary/Keyword: Metal separation

Search Result 543, Processing Time 0.021 seconds

Development of Pre-treatment for Tin Recovery from Waste Resources (주석 함유 폐자원의 공정부산물 전처리 기술)

  • Jin, Y.H.;Jang, D.H.;Jung, H.C.;Lee, K.W.
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.142-146
    • /
    • 2014
  • Fundamental experiences have been studied for development of pre-treatment process of Sn by-products such as solders. Dry and wet separation/recovery processes were considered by the differences of physical properties. The by-products, which are analyzed by solder metal and oxides. The metal and oxide were simply separated by dry ball-milling process for 12 hours, after that recovery metal powder might be reusable as lead or lead-free solders. In terms of wet separation process, samples were dissolved in $HNO_3+H_2O_2$ and the precipitation were analyzed by $SnO_2$. Overall efficiency of recovery might be increasing via developing simple pre-treatment process.

A New Chemical for the Separation of the CRT Panel Glass from its Funnel

  • Lee, Ki-Won;Byun, Ji-Young;Kim, Kyong-Tae;Oh, Jong-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.71-75
    • /
    • 2001
  • The first step for recycling the CRT bulb is to remove frist seals between the panel and funnel. For this purpose, various kinds of methods have been used. One of those is to use the nitric acid, which is a proven technology and widely used in CRT-making industries. The process. however. has a problem of NOx generation. Such a drawback can be overcome by using a new chemical. This new chemical can remove the frit without NOx generation. This paper describes the dissolution ability of the chemical for lead and zinc oxides and the application to the separation of the CRT panel from its funnel.

  • PDF

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

Chromatographic Behavior of Cryptand[2,2] Modified Resin on Metal Cations

  • Suh, Moo-Yul;Eom, Tae-Yoon;Suh, In-Suk;Kim, Si-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.366-372
    • /
    • 1987
  • Cryptand[2,2] was grafted to low crosslinked styrene-divinylbenzene copolymer by substitution reaction with chloromethylated styrene-divinylbenzene copolymer. This resin was stable in concentrated acid and base, and showed a good resistance to heat. The pH, time, and concentration dependence of the adsorption of metal ions by this resin were studied. Studies on the chromatographic separation of lanthanides, $Cu^{2+}$ and $UO_2^{2+_2}$ were also carried out with various eluents. These studies demonstrate that this resin has the applicability to the preconcentration and separation of metal ions.

A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop (철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구)

  • Son, Woohwa;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.59-66
    • /
    • 2012
  • In this study, it was sampling from heavy metal-contaminated soil with the waste in railroad workshop. And, the pollution concentration and analysis of particle-size distribution were conducted to design efficient purification process that it was aimed at high contaminated area, low contaminated area and samples containing waste foundry sand. But, it was the other signs of general soil contamination, as construction waste of waste concrete and waste wood, waste foundry sand, incinerator ash, etc is overall buried on the grounds. Thus, the common heavy metal purification technology has not decreased the pollution. However, heavy-metal contamination was reduced by magnetic separation utilizing the magnetic component of the mixed waste.

Reversed-Phase Liquid Chromatographic Separation of Metal Ions by Chelate Formation with 1-(2-Pyridylazo)-2-Naphthol (역상 액체크로마토그래피에 의한 1-(2-Pyridylazo)-2-Naphthol과 킬레이트를 형성하는 금속이온의 분리)

  • Kang, Sam Woo;Park, Sun Ja
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.197-202
    • /
    • 1998
  • 1-(2-Pyridylazo)-2-Naphthol (PAN) has been widely used as a spectrophotometric reagent and metallochromic indicator for many metal ions. In this work, the chelate reagent of PAN was used as mobile phase additive for the separation of metal ions by reversed phase chromatography. Metal ions could be detected by monitoring the effluent at 570 nm with spectrophotometric detector. In order to investigate retention behaviors of the metal ions, the chromatograms and capacity factors were obtained as the variation of pH, ionic strength and composition of organic modifier in mobile phase. Under the obtained optimum conditions, the mixtures of Fe(III), Ni(II), Cu(II), Zn(II) and Co(II) could be separated successfully and the calibration curves under the recommended conditions showed an excellent linearity. The detection limits(S/N) were feasible at the nanogram level.

  • PDF

A Study on the Physical Separation Characteristics of Valuable Metals from the Waste Printed Wiring Boards (물리적 처리에 의한 폐 컴퓨터 기판으로부터 유가금속의 분리선별 특성 연구)

  • 현종영;채용배;정수복
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Printed wiring boards(PWBs) of the obsolete computers are composed of various organic and inorganic compounds as well as metals and alloys. As convinced that the valuable metals obtained from the PWBs are effectively utilized as secondary resources when recovered by economical methods, in this study, an investigation for characterizing the physical separation techniques is conducted. For the recovery of them, the sockets and chips dismantled from PWBs by scraping and residual resin boards are subjected to the appropriate separation processes according to the physical properties of each part. In the case of crushed socket scraps size ranged from -2.36 mm to +1.18 mm, approximately 97 wt% of the product obtained by magnetic separation consists of metallic compounds. In the case of chip scraps, 97% of Fe-Ni alloy and 95% of Cu metal are recovered by the combined process of air classification and dry magnetic separation in the size range from -2.36 mm to +0.15 mm. Ball milling is adopted in order to improve the removal efficiency of the thin-printed metallic materials on the residual resin boards and approximately 77% of Cu metal is recovered by zigzag separation after ball milling.

Soil Washing Coupled with the Magnetic Separation to Remediate the Soil Contaminated with Metal Wastes and TPH (자력선별과 토양세척법을 연계하여 금속폐기물과 TPH로 복합 오염된 토양 동시 정화)

  • Han, Yikyeong;Lee, Minhee;Wang, Sookyun;Choi, Wonwoo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Batch experiments for the soil washing coupled with the magnetic separation process were performed to remediate the soil contaminated with metal and oil wastes. The soil was seriously contaminated by Zn and TPH (total petroleum hydrocarbon), of which concentrations were 1743.3 mg/kg and 3558.9 mg/kg, respectively, and initial concentrations of Zn, Pb, Cu, and TPH were higher than the 2nd SPWL (soil pollution warning limit: remediation goal). The soil washing with acidic solution was performed to remove heavy metals from the soil, but Pb and Zn concentration of the soil maintained higher than the 2nd SWPL even after the soil washing with acidic solution. The 2nd soil washing was repeated to increase the Pb and Zn removal efficiency and the Zn and Pb removal efficiencies additionally increased by only 8 % and 5 %, respectively, by the 2nd soil washing (> 2nd SPWL). The small particle separation from the soil was conducted to decrease the initial concentration of heavy metals and to increase the washing effectiveness before the soil washing and 4.1 % of the soil were separated as small particles (< 0.075 mm in diameter). The small particle separation lowered down Zn and Pb concentrations of soil to 1256.3 mg/kg (27.9 % decrease) and 325.8 mg/kg (56.3 % decrease). However, the Zn concentration of soil without small particles still was higher than the 2nd SPWL even after the soil washing, suggesting that the additional process is necessary to lower Zn concentration to below the 2nd SPWL after the treatment process. As an alternative process, the magnetic separation process was performed for the soil and 16.4 % of soil mass were removed, because the soil contamination was originated from unreasonable dumping of metal wastes. The Zn and Pb concentrations of soil were lowered down to 637.2 mg/kg (63.4 % decrease) and 139.6 mg/kg (81.5 % decrease) by the magnetic separation, which were much higher than the removal efficiency of the soil washing and the particle separation. The 1st soil washing after the magnetic separation lowered concentration of both TPH and heavy metals to below 2nd SPWL, suggesting that the soil washing conjugated with the magnetic separation can be applied for the heavy metal and TPH contaminated soil including high content of metal wastes.

Feasibility of Present Soil Remediation Technologies in KOREA for the Control of Contaminated Marine Sediment: Heavy Metals (우리나라 현존 토양정화 기술의 해양오염퇴적물 정화사업 적용 가능성 검토: 중금속)

  • Kim, Kyoung-Rean;Choi, Ki-Young;Kim, Suk-Hyun;Hong, Gi-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1076-1086
    • /
    • 2010
  • Soil remediation technologies were experimented to evaluate whether the technologies could be used to apply remediation of contaminated marine sediment. In this research, marine sediments were sampled at "Ulsan" and "Jinhae" where remediation projects are considered, and then the possibility of heavy metal removal was evaluated throughout the technologies. Heavy metal concentration of silt and clay fraction was higher than that of sand fraction at "Ulsan". Heavy metal removal of the silt and clay fraction was arsenic (As) 81.5%, mercury (Hg) 93.8% by particle separation, cadmium (Cd) 72.2%, mercury (Hg) 93.8% by soil washing technology, cadmium (Cd) 70.8%, lead (Pb) 65.6% by another soil washing technology. Based on experimental results, tested particle separation and soil washing technologies could be used to remove heavy metals of sand fraction and silt and clay fraction. Heavy metal removal by soil washing technology which was composed of separation, washing and physical or chemical reaction by additives such as acid, organic solvents was more effective comparing to that of particle separation. Since heavy metal concentration of all treated samples was suitable for national soil standards, all the tested technologies were could be used not only to remove heavy metals of marine contaminated sediment but also to reuse treated samples in land.

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Kim, Sung-Wook;Heo, Dong Hyeon;Kang, Hyun Woo;Hong, Sun-Seok;Lee, Sang-Kwon;Jeon, Min Ku;Hur, Jin-Mok;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1866-1870
    • /
    • 2019
  • Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.