• Title/Summary/Keyword: Metal printing

Search Result 341, Processing Time 0.028 seconds

A Study on Metal Expressed in Contemporary Fashion -Focusing on Women's Fashion in 1990s- (현대패션에 나타난 금속에 관한연구 -1990년대 여성복을 중심으로-)

  • 금기숙
    • Journal of the Korean Society of Costume
    • /
    • v.45
    • /
    • pp.161-178
    • /
    • 1999
  • In contemporary fashion metal have used which is as the material with a sufficient potentiality of expression which is displayed by an unique characteristic involved only in metal. In this paper metal expressed in contemporary fashion is researched. The first thing the formative characteristic of metal is researched under the consideration of type technique and color of metal used in contemporary fashion. Metals such as gold silver bronze aluminum thin lead and iron are usually used in fashion and those metals are used in various types such a thread fabric board leaf a and cable. Those types of metal as above are applied to the clothing by the techniques of weaving embroidering metal leaf printing or moulding which gives the formative characteristic to the clothing. In color metal has an effect on the colors of surroundings by its smooth and unique luster and its effect of reflection and produces the visual formative characteristic through the effects of contrast. The esthetic will of metal expressed in modern fashion is researched in this study under the facts studied as above. first metal expresses the future oriented esthetic Second metal has the characteristic of attracting the attention Third metal is used as valid techniques to express the artistic formation for clothing escaping from the idea that the clothing is only for wearing. Finally metal is used as an anti-cultural tool of fighting against the existing order or spirit.

  • PDF

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

Wearable Force Sensor Using 3D-printed Mold and Liquid Metal (삼차원 프린트된 몰드와 액체 금속을 이용한 웨어러블 힘 센서 개발)

  • Kim, Kyuyoung;Choi, Jungrak;Jeong, Yongrok;Kim, Minseong;Kim, Seunghwan;Park, Inkyu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.198-204
    • /
    • 2019
  • In this study, we propose a wearable force sensor using 3D printed mold and liquid metal. Liquid metal, such as Galinstan, is one of the promising functional materials in stretchable electronics known for its intrinsic mechanical and electronic properties. The proposed soft force sensor measures the external force by the resistance change caused by the cross-sectional area change. Fused deposition modeling-based 3D printing is a simple and cost-effective fabrication of resilient elastomers using liquid metal. Using a 3D printed microchannel mold, 3D multichannel Galinstan microchannels were fabricated with a serpentine structure for signal stability because it is important to maintain the sensitivity of the sensor even in various mechanical deformations. We performed various electro-mechanical tests for performance characterization and verified the signal stability while stretching and bending. The proposed sensor exhibited good signal stability under 100% longitudinal strain, and the resistance change ranged within 5% of the initial value. We attached the proposed sensor on the finger joint and evaluated the signal change during various finger movements and the application of external forces.

Evaluation of marginal and internal fit of metal copings fabricated by selective laser melting (SLM 방식으로 제작한 도재관 금속하부구조물의 변연 및 내면 적합도 평가)

  • Sung-Ryung Bae;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: To evaluate the marginal and internal fit of metal coping fabricated by a metal three-dimensional (3D) printer that uses selective laser melting (SLM). Methods: An extraoral scanner was used to scan a die of the prepared maxillary right first molar, and the coping was designed using computer-aided design software and saved as an stereo lithography (STL) file. Ten specimens were printed with an SLM-type metal 3D printer (SLM group), and 10 more specimens were fabricated by casting the castable patterns output generated by a digital light processing-type resin 3D printer (casting the 3D printed resin patterns [CRP] group). The fit was measured using the silicon replica technique, and 8 points (A to H) were set per specimen to measure the marginal (points A, H) and internal (points B~G) gaps. The differences among the groups were compared using the Mann-Whitney U-test (α=0.05). Results: The mean of marginal fit in the SLM group was 69.67±18.04 ㎛, while in the CRP group was 117.10±41.95 ㎛. The internal fit of the SLM group was 95.18±41.20 ㎛, and that of the CRP group was 86.35±32 ㎛. As a result of statistical analysis, there was a significant difference in marginal fit between the SLM and CRP groups (p<0.05); however, there was no significant difference in internal fit between the SLM group and the CRP group (p>0.05). Conclusion: The marginal and internal fit of SLM is within the clinically acceptable range, and it seems to be applicable in terms of fit.

Maskless Screen Printing Process using Solder Bump Maker (SBM) for Low-cost, Fine-pitch Solder-on-Pad (SoP) Technology

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.65-68
    • /
    • 2013
  • A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process. A selective solder bumping mechanism without the mask is based on the material design of SBM. Maskless screen printing process can implement easily a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology. Its another advantage is ternary or quaternary lead-free SoP can be formed easily. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 ${\mu}m$ is, successfully, formed.

Preliminary Works of Contact via Formation of LCD Backplanes Using Silver Printing

  • Yang, Yong Suk;You, In-Kyu;Han, Hyun;Koo, Jae Bon;Lim, Sang Chul;Jung, Soon-Won;Na, Bock Soon;Kim, Hye-Min;Kim, Minseok;Moon, Seok-Hwan
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.571-577
    • /
    • 2013
  • The fabrication of a thin-film transistor backplane and a liquid-crystal display using printing processes can eliminate the need for photolithography and offers the potential to reduce the manufacturing costs. In this study, we prepare contact via structures through a poly(methyl methacrylate) polymer insulator layer using inkjet printing. When droplets of silver ink composed of a polymer solvent are placed onto the polymer insulator and annealed at high temperatures, the silver ink penetrates the interior of the polymer and generates conducting paths between the top and bottom metal lines through the partial dissolution and swelling of the polymer. The electrical property of various contact via-hole interconnections is investigated using a semiconductor characterization system.

Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion

  • Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Hyoung Seop Kim;Jae Wung Bae;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBF-processed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.

Cu-based ink-jet printable inks for highly conductive patterns at lower temperature

  • Woo, Kyoo-Hee;Kim, Dong-Jo;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.799-802
    • /
    • 2008
  • The metal films ink-jetted using the conductive ink based on a mixture of copper and silver nanoparticles were investigated. The porosity and resistivity of films were minimized by adjusting the mixing ratio of Cu and Ag nanoparticles. We demonstrated that the printed tracks with good conductivity could be obtained at sufficiently lower annealing temperatures where plastic substrates could be used.

  • PDF

Printable low work function cathode for OLED devices

  • Maaninen, Tiina;Tuomikoski, Markus;Maaninen, Arto
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.721-723
    • /
    • 2007
  • Commercial conductive metal inks are available, but metals used in these have unsuitable work function for efficient OLED device performance. Metals with low work function tend to oxidize easily, which makes it challenging to develop low work function metal inks. In this research we describe printed low work function Al cathode.

  • PDF

Nkjet-printing of Ag-metal-grid/Indium-tin-oxide (ITO) Hybrid Films for Transparent Conducting Electrodes

  • Yang, Chan-Ho;Lee, Yeong-U;Cha, Jong-Myeong;Kumar, Vishwanath Sujaya;Lee, Seong-Nam;Kim, Ji-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.252-252
    • /
    • 2014
  • 투명전극 제조에 이용되고 있는 진공기반 ITO공정의 제조 단가를 줄이기 위하여 용액 기반의 투명전극 제조 기술에 대한 연구를 수행 하였다. 용액공정을 수행하기 위하여 ITO 나노입자를 이용한 잉크를 제조하고 이를 잉크젯 인쇄공정에 적용하여 ITO 투명전극을 제조하였다. 열처리 온도에 따른 전기적 광학적 특성에 대한 분석을 진행하였다. 전기적 물성의 극대화를 위해 Ag metal grid를 인쇄공정을 통해 제작하고 용액기반 ITO 박막과 융합화(hybridization) 시켰다. Ag metal grid의 line width를 최소화 하기 위하여 전기수력학 방식의 잉크젯 시스템을 사용하여 metal grid를 형성하였고 Ag metal grid는 약 10um의 선폭을 가졌다. 인쇄된 Ag-grid/ITO 박막의 경우 550 nm파장에서(Ag grid pitch: 500 um기준) 약88%의 투과도를 보이며 저항이 $5{\Omega}/{\square}$ 이하의 특성을 나타내었다.

  • PDF