• Title/Summary/Keyword: Metal powders

Search Result 577, Processing Time 0.024 seconds

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Synthesis and Characterization of Sm2O3 Doped CeO2 Nanopowder by Reverse Micelle Processing (역마이셀을 이용한 Sm2O3 도핑 CeO2 나노분말의 합성 및 특성)

  • Kim, Jun-Seop;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.207-210
    • /
    • 2012
  • The preparation of $Sm_2O_3$ doped $CeO_2$ in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized $Sm_2O_3$ doped $CeO_2$ powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized $Sm_2O_3$ doped $CeO_2$ were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of $Sm_2O_3$ doped $CeO_2$ nanoparticles changed from monoclinic to tetragonal at approximately $560^{\circ}C$. The phase of the synthesized $Sm_2O_3$ doped $CeO_2$ with heating to $600^{\circ}C$ for 30 min was tetragonal $CeO_2$. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.

A Study on the Preparation of Rare Earth Oxide Powder for Rare Earth Precipitates Recovered from Spent Ni-MH Batteries (폐니켈수소전지로부터 회수된 희토류 침전물의 희토류 산화물 분말 제조에 대한 연구)

  • Kim, Dae-Weon;Ahn, Nak-Kyoon;Shim, Hyun-Woo;Park, Kyung-Soo;Choi, Hee-Lack
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • We report a method for preparing rare earth oxides ($Re_xO_y$) from the recycling process for spent Ni-metal hydride (Ni-MH) batteries. This process first involves a leaching of spent Ni-MH powders with sulfuric acid at $90^{\circ}C$, resulting in rare earth precipitates (i.e., $NaRE(SO_4)_2{\cdot}H_2O$, RE = La, Ce, Nd), which are converted into rare earth oxides via two different approaches: i) simple heat treatment in air, and ii) metathesis reaction with NaOH at $70^{\circ}C$. Not only the morphological features but also the crystallographic structures of all products are systematically investigated using field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD); their thermal behaviors are also analyzed. In particular, XRD results show that some of the rare earth precipitates are converted into oxide form (such as $La_2O_3$, $Ce_2O_3$, and $Nd_2O_3$) with heat treatment at $1200^{\circ}C$; however, secondary peaks are also observed. On the other hand, rare earth oxides, RExOy can be successfully obtained after metathesis of rare earth precipitates, followed by heat treatment at $1000^{\circ}C$ in air, along with a change of crystallographic structures, i.e., $NaRE(SO_4)_2{\cdot}H_2O{\rightarrow}RE(OH)_3{\rightarrow}RE_xO_y$.

Synthesis of thermoelectric Mg3Sb2 by melting and mechanical alloying (용융법과 기계적 합금화에 의한 열전재료 Mg3Sb2의 제조)

  • Kim, In-Ki
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.207-212
    • /
    • 2012
  • A single phase $Mg_3Sb_2$ alloy was synthesized by melting the mixture of Mg and Sb metal powders at 1173 K. The figure of merit of the $Mg_3Sb_2$ prepared by melting method increased with temperature and showed a value of $2.39{\times}10^{-2}$ at 593 K. When the $Mg_3Sb_2$ powders were milled at high speed in a planetary ball mill for 12~48 h, Zintle phase ($Mg_3Sb_2$) was maintained as a main phase, but its crystallinity became deteriorated and elemental Sb phase appeared. Sb phase free $Mg_3Sb_2$ could be obtained by the mechanical alloying of high speed ball milling for 24 h using elemental Mg and Sb powder mixtures.

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors (불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성)

  • Choi, Jung Bum;Kang, Chong Yun;Yoon, Seok-Jin;Yoo, Kwang Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.337-341
    • /
    • 2014
  • For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.

$SnO_2$ Dispersion of Sintered Body in $In_2O_3-SnO_2$ Binary System ($In_2O_3-SnO_2$ 이성분계 소결특성에 있어서 $SnO_2$ 분산성)

  • Chun, Tae-Jin;Park, Wan-Soo;Cho, Muyung-Jin;Kim, Jong-Su;Kim, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.198-198
    • /
    • 2006
  • Tin doped $In_2O_3$ sputtering target is widely used to produce a various kinds of flat panel display because of high transmittance in visible region and high electrical conductivity. In2O3 and SnO2 powders were prepared by a homogeneous precipitation method using metal source, respectively, the calcining and sintering behavior of the indium-tin oxide(In2O3-SnO2) composite powders were studied. The tin oxide(SnO2) dispersion condition in ITO sputtering target was improved by increasing calcining temperature. And the tin oxide dispersion was also improved by reducing the tin oxide contents in the ITO target from 30 to 5wt%. SnO2 dispersion and densification of ITO target is very difficult to control due to sublimation of SnO2 at over 1150C.

  • PDF

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide (La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발)

  • Jung, Mie-Won;Lim, Saet-Byeol;Moon, Bo-Ram;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

$\alpha$-Cordierite Synthesis from Alkoxide with HCL catalyst (HCl을 촉매로 한 Alkoxide로 부터 $\alpha$-cordierite 합성)

  • Ryu, Su-Chak;Park, Hui-Chan
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.55-62
    • /
    • 1995
  • Cordierite powders were prepared by a controlled hydrolysis of metal alkoxides with ethanol and distilled water. HC1 was used as a catalyst. The amount of HCI catalyst used was in range of 0.1-0. 5mol per lmol of TEOS. Effects of HC1 catalyst on the characteristics of cordierite powder were examined. $\alpha$-Cordierite powder prepared with HCI/TEOS mol ratio of O.lmol/mol was crystallized at $1050^{\circ}C$. On the other hand, $\alpha$-cordierite powders prepared with HCI/TEOS rnol ratio of 0.3 and 0.5rnol/mol were crystallized at $950^{\circ}C$. Spinel( mA120a) phase remained up to $1300^{\circ}C$ in the cordierite powder prepared with HCI/TEOS rnol ratio of 0.lrnolirnol. On the contrary, spinel phase was absent, and mordierite was the only phase remalned at $1300^{\circ}C$ in the cordierite powder prepared with HCI/TEOS mol ratio of 0.3 and O:5mol/mol.

  • PDF

The Properties of Sintered Body by Using the Slip Casting Process with Remained Dental Zirconia Block after Machining (치과용 지르코니아 코어 가공후의 잔여물을 활용하여 주입성형법으로 제조한 소결체의 특성)

  • Kim, Sang-Su;Lee, Dong-Yoon;Seo, Jeong-Il;Bae, Won-Tae
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Purpose: All ceramic crown, made from zirconia instead of metal for core material, is recognized the best esthetical prosthesis. Recently, high-priced zirconia blocks and expensive CAD/CAM machines come into use for making zirconia core. In this study, slip casting process is adapted to evaluate the possibility of the recycling the remained parts of zirconia block after machining. Methods: Remained zirconia blocks were reduced to powders with zirconia mortar, and screened with 180 mesh sieve. Passed powders were ball milled under various conditions to obtain the optimum zirconia slip for casting. Solid casting method was used for casting the specimens with plaster mold. Formed specimens were dried and biscuit fired at $1,000^{\circ}C$ for 1 hour. Biscuit fired specimens were finished with exact shape of square pillar. Finished specimens were fired from $1,200^{\circ}C$ to $1,550^{\circ}C$ at $50^{\circ}C$ intervals for 1 hour. Linear shrinkage, apparent porosity, water absorption, bulk density, and flexural strength were tested. Microstructures were observed by SEM. Results: Above examinations indicated that the optimum firing temperture was $1,500^{\circ}C$, and when fired at this temperature for 1 hour, apparent porosity was 0% and flexural strength was 680MPa. SEM photomicrographs showed uniform 200~300nm grain size, which is equal with microcture of sintered commercial zirconia block. when compare 24% linear shrinkage of cast specimen with 20% linear shrinkage of CAD/CAM machined block, it was estimated that the size controlling of cast core was not so difficult. Conclusion: According to the all of this experimental results, the cast zirconia core produced from the remained parts of zirconia block was possible to use for all ceramic denture.