• Title/Summary/Keyword: Metal powder injection molding

Search Result 77, Processing Time 0.022 seconds

A study on the effects of polymer core gate sizes on thickness shrinkage rate (폴리머코어 게이트 크기 변화가 두께 방향 수축률에 미치는 영향에 대한 연구)

  • Choi, Han-Sol;Jeong, Eui-Chul;Park, Jun-Soo;Kim, Mi-Ae;Chae, Bo-Hye;Kim, Sang-Yun;Kim, Yong-Dae;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this study, the variation of the shrinkage in the thickness direction of the molded parts according to the gate size of the polymer core fabricated through the 3D printer using the SLS method was studied. The polymer cores are laser sintered and the powder material is nylon base PA2200. The polymer cores have lower heat transfer rate and rigidity than the metal core due to the characteristics of the material. Therefore, the injection molding test conditions are set to minimize the deformation of the core during the injection process. The resin used in the injection molding test is a PP material. The packing condition was set to 80, 90 and 100% of the maximum injection pressure for each gate size. The runner diameter used was ∅3mm, and the gates were fabricated in semicircle shapes with cross sections 1, 2, and 3 ㎟, respectively. Thickness measurement was performed for 10 points at 2.5 mm intervals from the point 2.5 mm away from the gate, and the shrinkage to thickness was measured for each point. The shrinkage rate according to the gate size tends to decrease as the cross-sectional area decreases as the maximum injection pressure increases. The average thickness shrinkage rate was close to 0% when the packing pressure was 90% for the gate area of 1mm2. When the holding pressure was set to 100%, the shrinkage was found to decrease by 3% from the standard dimension due to the over-packing phenomenon. Therefore, the smaller the gate, the more closely the molded dimensions can be molded due to the high pressure generation. It was confirmed that precise packing process control is necessary because over-packing phenomenon may occur.

Development of Rapid Tooling using Investment Casting & R/P Master Model (R/P 마스터 모델을 활용한 정밀주조 부품 및 쾌속금형 제작 공정기술의 개발)

  • Jeong, Hae-Do;Kim, Hwa-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.330-335
    • /
    • 2000
  • Functional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported. But a system which can build directly 3D parts of high performance functional material as metal park would get long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we translated the wax patterns to numerous metal tool prototypes by new investment casting process combined conventional investment casting with rapid prototyping & rapid tooling process. With this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P pare to metal part.

  • PDF

Densification Behavior and Magnetic Properties of Fe-2%Ni Sintered Compact Fabricated by Metal Injection Molding (사출성형법에 의해 제작된 Fe-2%Ni연자성 소결체의 소결 및 자기적 특성)

  • Lim, Tae-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.278-283
    • /
    • 2019
  • 3 kinds of fine powder, Fe-2%Ni alloy powder(N Ltd.) and Fe+2%Ni mixed powder(B Ltd. and S Ltd.), were fabricated into sintered compacts of bending strength specimens and ring type specimens by metal injection molding, debinding and controlling sintering conditions (reduction and sintering atmospheres, sintering temperature, sintering time and cooling rates). Density and magnetic properties of the sintered compacts were evaluated with the following conclusions. (1) When each compact was hold at 1123K for 3.6ks in H2 and sintered at 1623K for 14.4ks in Ar, the density of N, B and S Ltd.'s sintered compacts were measured as 96, 99 and 99%, and oxygen/carbon contents were measured as 0.0041%O/0.0006%C, 0.0027%O/0.0022%C, and 0.160%O/0.0026%C, respectively. (2) Magnetic characteristics of B Ltd. compact in Ar with the best results showed $B_{25}=14.3KG$, $B_r=7.75KG$, and $H_c=2.1Oe$, but not enough as those made by melting process. (3) Magnetic properties of B Ltd. compact which were sintered at 1673K for 14.4ks in Ar gas, and cooled at $0.83Ks^{-1}$ to 1123K and then cooled at $0.083Ks^{-1}$ down to room temperature were measured as $B_{25}=14.8KG$, $B_r=8.3KG$, and $H_c=1.3Oe$, almost similar to those made by melting process. Objected soft magnetic materials properties were obtained through sintering process by controlling sintering conditions (reduction condition, sintering atmosphere, sintering temperature and sintering time) and cooling rates.

Effect of Dispersant and Silane on Dispersion of Magnetic Powder Paste (연자성 금속 분말의 분산에 분산제와 실란이 미치는 영향)

  • Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.25-29
    • /
    • 2019
  • Various process technologies for manufacturing power inductors are under development. The core goal is to increase the mixing ratio of the soft magnetic powder in the epoxy, and to uniformly disperse it in a molding-type power inductor, manufactured by the injection molding method. In this study, we investigated the effect of dispersant and silane on the dispersion of soft magnetic metal powders in epoxy. We added 0.6 wt% of dispersant and 2.0 wt% of silane, and an excellent dispersibility resulted. Under the conditions of 0.3 wt% of dispersant and 0.5 wt% of silane, we added both dispersant and silane together to observe the effect of their interaction on dispersibility. Similarly, the addition of 0.3 wt% of dispersant and 0.1 wt% of silane resulted in a sharp increase in viscosity, considered to be due to the interaction of the dispersant and silane. The addition of 0.1 wt% of dispersant with 0.5 wt% of silane resulted in a sharp rise in viscosity, and sedimentation-height decreased sharply due to the dispersion optimization.

Study on the shaping process of turbocharger nozzle slide joint (터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.107-114
    • /
    • 2017
  • A turbocharger is an engine supercharger that is driven by exhaust gas. It improves the output and fuel efficiency by increasing the charging efficiency of the mixture gas, which is achieved by changing the rotatory power of the turbine connected to the exhaust passage. It is important to control the supercharging for this purpose. A nozzle slide joint is one of the core parts. Austenitic stainless steel is currently used as the material for this part, and its excellent mechanical properties include high heat resistance and corrosion resistance. However, because of its poor machinability, there are many difficulties in producing products with complicated shapes. Machining is used in the production of nozzle slide joints for high dimensional accuracy after metal powder injection molding. As design variables in this study, we investigated the sintering temperature, product stress, deformation rate, radius of curvature of the punch, and angle of the chamfer punch, which are related to the strain and shapes. The goal is to suggest a forming process using Nitronic 60 that does not require machining to manufacture a nozzle slide joint for a turbocharger. Accordingly, we determined the best process environment using finite-element analysis, the signal-noise ratio, and the Taguchi method for experiment design. The relative density and hydrostatic pressure of the final product were in accordance with the results of the finite element analysis. Therefore, we conclude that the Taguchi method can be applied to the design process of metal powder injection molding.

Development of Investment Casting Technique using R/P Master Model (R/P 마스터모델을 활용한 정밀주조 공정기술의 개발)

  • Im, Yong-Gwan;Chung, Sung-Il;Jeong, Hae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.52-57
    • /
    • 1999
  • Funtional metal prototypes are often required in numerous industrial applications. These components are typically needed in the early stage of a project to determine form, fit and function. Recent R/P(Rapid Prototyping) part are made of soft materials such as plastics, wax, paper, these master models cannot be employed durable test in real harsh working environment. Parts by direct metal rapid tooling method, such as laser sintering, by now are hard to get net shape, pores of the green parts of powder casting method must be infiltrated to get proper strength as tool, and new type of 3D direct tooling system combining fabrication welding arc and cutting process is reported by song etc. But a system which can build directly 3D parts of high performance functional material as metal part would need long period of system development, massive investment and other serious obstacles, such as patent. In this paper, through the rapid tooling process as silicon rubber molding using R/P master model, and fabricate wax pattern in that silicon rubber mold using vacuum casting method, then we tranlsated the wax patterns to numerous metal prototypes by new investment casting process combined conventional investment casting with rapid pototyping & rapid tooling process. with this wax-injection-mold-free investment casting, we developed new investment casting process of fabricating numerous functional metal prototypes from one master model, combined 3-D CAD, R/P and conventional investment casting and tried to expect net shape measuring total dimension shrinkage from R/P part to metal part.

  • PDF

The Variation of Packing Density According to Powder Size Distribution and Epoxy Resin in Soft Magnetic Composite (연자성 복합체에서 파우더 크기 분포와 Epoxy Resin에 따른 Packing Density 변화)

  • Lee, Chang Hyun;Oh, Sea Moon;Shin, Hyo Soon;Yeo, Dong Hun;Kim, Jin Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.782-787
    • /
    • 2017
  • There is growing interest in power inductors in which metal soft magnetic powder and epoxy resin are combined. In this field, the process technology for increasing the packing density of magnetic particles in an injection molding process is very important. However, little research has been reported in this regard. In order to improve the packing density, we investigated and compared the sedimentation heights of pastes for three types of soft magnetic alloy powders as a function of the mixing ratios and the type of resin used. Experimental results showed that the packing density was the highest (71.74%) when the mixing ratio was 80 : 16 : 4 (Sendust : Fe-S : CIP) according to the particle size using an SE-4125 resin. In addition, the packing density was found to be inversely related to the layer separation distance. As a result, it was confirmed that the dispersion of solid particles in the paste was important for curing; however, the duration of the curing process can greatly affect the packing density of the final composite.