• Title/Summary/Keyword: Metal particle

Search Result 998, Processing Time 0.03 seconds

Metal Nano Particle modified Nitrogen Doped Amorphous Hydrogenated Diamond-Like Carbon Film for Glucose Sensing

  • Zeng, Aiping;Jin, Chunyan;Cho, Sang-Jin;Seo, Hyun-Ook;Lim, Dong-Chan;Kim, Doo-Hwan;Hong, Byung-You;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.434-434
    • /
    • 2011
  • Electrochemical method have been employed in this work to modify the chemical vapour deposited nitrogen doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel and copper nano particle modified N-DLC electrodes. The electrochemical behaviour of the metal nano particle modified N-DLC electrodes have been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano particles on the N-DLC surface have been investigated using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The nickel nano particle modified N-DLC electrode exhibits a high catalytic activity and low background current, while the advantage of copper modified N-DLC electrode is drawn back by copper oxidizations at anodic potentials. The results show that metal nano particle modification of N-DLC surface could be a promising method for controlling the electrochemical properties of N-DLC electrodes.

  • PDF

Effect of Manufacturing Process Conditions on Characteristics of Metal Particle Tape (초미립 Metal Tape의 제특성에 미치는 제조공정의 영향)

  • 김주호;김기호
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 1996
  • The effects of various manufacturing conditions on the characteristics of metal particle tape using ultra-fine metal powder were investigated. As functions of kneading conditions and milling solid contents. coating thickness, orientation, calender and curing conditions. various properties of the tapes were studied. By the consideration of physical and eletromagnetic properties of the tapes, optimum process conditions were determined. As a result of above investigations, we concluded that manufacturing processes were very important factor in addition to dispersion behavior of particles for achieving maximum properties of the metal particle tape.

  • PDF

Effect of dielectrics on NOx removal of Metal particle-$Al_2O_3$ hybrid type reactor (금속파티클-$Al_2O_3$ hybrid 반응기의 NOx 제거에 미치는 유전체 영향)

  • Kim, J.S.;Park, J.Y.;Jung, J.G.;Kim, T.Y.;Goh, H.S.;Kim, H.M
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.917-921
    • /
    • 2002
  • In this paper, we made different types of non-thermal plasma reactors such as Metal-particle reactor with $Al_2O_3$ to measure NOx removal characteristic and the dielectric effect for NOx removal. NOx removal rate is not so good when we use just dielectric of $Al_2O_3$ at the Metal-particle reactor, also we just put sludge pellets(100%) without Metal-particle reactor with $Al_2O_3$ and dielectric such as $TiO_2$, $BaTiO_3$ to measure the effect of sludge for NOx removal so that NOx removal rate is almost the same. However NOx removal rate is more than 90% in case of the reactor of composition shape used both dielectric of $Al_2O_3$ and sludge pellets at the same time. In case of the shape of plasma reactor with dielectric, the Metal-particle reactor with $Al_2O_3$, and the metal-particle reactor with both $Al_2O_3$ and dielectric such as $TiO_2$, $BaTiO_3$ at the same time, they are almost the same effect for NOx removal, so we made MNPR(Metal-particle Non-thermal Plasma Reactor with $Al_2O_3$) to reduce these kinds of demerits. Finally, we think MNPR should be much better than other reactors for NOx removal.

  • PDF

Effect of Dielectrics on NOx Removal of Metal Particle-AI2O3 Barrier Reactor (금속파티클-AI2O3Barrier 반응기의 NOx 제거에 미치는 유전체 영향)

  • 박재윤;김종석;고희석;김형만;배명환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.247-252
    • /
    • 2003
  • In this paper, we made four types of metal particle $Al_2$O$_3$ barrier reactors with and without dielectric of BaTiO$_3$ between metal particle and $Al_2$O$_3$ barrier to investigate NOx removal characteristic and the effect of dielectric on Nox removal. And Nox removal rate is measured when sludge pellets are put at down stream of plasma reactor. Nox removal rate in the reactor with $Al_2$O$_3$ barrier is much better than that in the reactor without $Al_2$O$_3$ barrier, Nox removal rate is not so good in metal particle-Al$_2$O$_3$ barrier reactor with BaTiO$_3$ between metal particle and $Al_2$O$_3$ barrier, however, Nox removal rate is about 40% in metal particle-Al$_2$O$_3$ barrier reactor with TiO$_2$. The most of NO is conversed to NO$_2$ in these kind of reactor. When sludge pellets are put at down stream of plasma reactor, Nox removal rate is greatly improved up to 90%. It indicates that sludge pellets have great effect on the NO$_2$ removal and the improvement of Nox removal rate, however, dielectric materials between metal particle and $Al_2$O$_3$ barrier have not effect. Organic materials included in sludge may react with NO$_2$ and ozone so that Nox removal rate is greatly improved.

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.

Molten Metal Flow Analysis of Casting Process Using SPH Method (SPH 기법을 이용한 주조공정 용탕 주입 유동 해석)

  • Park, Byung Lae;Lee, Sang Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2018
  • It is important to develop more efficient and productive casting processes for an automated high precision molten-metal casting system. Detailed analysis of molten-metal flow in the casting process by the numerical approach will help to optimize the control of a ladle. In this study, the smoothed particle hydrodynamics method was applied to analyze casting flow characteristics with different tilting angular speed and initial molten-metal level. The smoothed particle hydrodynamics technique has advantages to easily handle non-linear free surface behavior with the absence of a computational mesh. We found that tilting angular speed has relatively greater effect on the casting flowrate and that the effect of the initial molten-metal level is only minor. Further extensive study will be necessary to find an optimal condition for high efficient casting system.

A Study on Improvement of Valuable Metals Leaching and Distribution Characteristics on Waste PCBs(Printed Circuit Boards) by Using Pulverization Process (폐 PCBs의 미분쇄 공정 적용에 따른 유가금속 분포 특성 및 금속 침출 향상에 관한 연구)

  • Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.245-251
    • /
    • 2015
  • The main objective of this study is to recovery valuable metals with metal particle size distributions in waste cell phone PCBs(Printed Circuit Boards) by means of pulverization and nitric acid process. The particle size classifier also was evaluated by specific metal contents. The PCBs were pulverized by a fine pulverizer. The particle sizes were classified by 5 different sizes which were PcS1(0.2 mm below), PcS2(0.20~0.51 mm), PcS3(0.51~1.09 mm), PcS4(1.09~2.00 mm) and PcS5(2.00 mm above). Non-magnetic metals in the grinding particles were separated by a hand magnetic. And then, Cu, Co and Ni were separated by 3M nitric acid. Particle diameter of PCBs were 0.388~0.402 mm after the fine pulverizer. The sorting coefficient were 0.403~0.481. The highest metal content in PcS1. And the bigger particle diameter, the lower the valuable metals exist. The recovery rate of the valuable metals increases in smaller particle diameter with same leaching conditions. For further work, it could improve to recovery of the valuable metals effectively by means of individual treatment, multistage leaching and different leaching solvents.

Evaluation of The Wear Characteristics on The White Metal Bearing in a Low Speed Two-Stroke Marine Diesel Engine (저속 2행정 박용 기관에서의 LO 입자 오염도에 따른 베어링 마모 특성 평가)

  • Ahn, Y.H.;Kim, D.Y.;Kim, Y.C.;Park, D.J.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.21-22
    • /
    • 2005
  • A study on the wear characteristics of the white metal(Sn-base alloy) bearing as a function of particle contamination level was conducted in order to establish control criteria of the lubricant in the 2-stroke marine diesel engine. Particle contamination level of the lubricants ranged from NAS 10 to 12 for the experiments. Bar-on-plate type wear test was performed using reciprocating wear tester. Based on this study it was found that there was no noticeable difference in weight loss of the white metal for NAS10 and NAS11(particle contamination level). Surface roughness of the white metal bearing after the wear test of 8hrs for the highly contaminated lubricant(NAS12 level) was up to $6{\mu}m$ in Rmax whilst that of the less contaminated lubricants(NAS10 & 11) was less than $1.5{\mu}m$ in Rmax.

  • PDF

EFFECTS OF TRACE METALS ON PARTICULATE MATTER FORMATION IN A DIESEL ENGINE: METAL CONTENTS FROM FERROCENE AND LUBE OIL

  • Lee, D.G.;Miller, A.;Park, K.H.;Zachariah, M.R.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.667-673
    • /
    • 2006
  • Diesel particulate matter(DPM) often contains small amounts of metal as a minor component but this metal may contribute to adverse health effects. Knowledge of the mechanism for particle formation as well as the size preference of the trace metals is critical to understanding the potential for health concerns. To achieve this, the size and the composition of each particle should be optimally measured at the same time. Single particle mass spectrometer(SPMS) would be the best tool for this objective. In this paper, we therefore will introduce new findings about the mechanism and distribution of the trace metals in DPM, derived from a study where an SPMS was used to analyze freshly emitted DPM.

Cure Characteristics of Metal Particle Filled DGEBA/MDA/SN/ zeolite Composite System for EMI Shielding

  • Cho, Young-Shin;Lee, Hong-Ki;Shim, Mi-Ja;Kim, Sang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.548-551
    • /
    • 1999
  • The cure characteristics of metal particle filled DGEBA/MDA/SN/ zeolite epoxy resin composite system for EMI shielding were investigated by dynamic DSC run method and FT-lR spectroscopy. As the heating rate increased, the peak temperature on dynamic DSC curve increased because of the rapid cure reaction. From the straight line of the Kissinger plot, the curing reaction activation energy and pre-exponential factor could be obtained. As the post-curing time at 15$0^{\circ}C$ increased, the glass increased the glass transition temperature or the thermal stability increased. When the post curing time is too long, the system filled with metallic Al particle can be thermally oxidized by the catalytic reaction of metal filler and the thermal stability of the composite for the EMI shielding application may be decreased.

  • PDF