• Title/Summary/Keyword: Metal organic deposition

Search Result 461, Processing Time 0.16 seconds

Preparation of high $T_{c}$ superconducting thin films by chemical vapour deposition method (기상성장법에 의한 산화물 고온초전도박막의 제작)

  • 이현수;한상옥;이덕출
    • Electrical & Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.267-272
    • /
    • 1991
  • 본 연구는 MOCDV(Metal Organic Chemical Vapour Deposition)법을 이용한 Y-Ba-C-O계 산화물 초전도체 박막을 제작하여 박막의 조성비와 결정성, 임계온도에 대하여 측정 분석하였다. 이 박막의 조성비는 Y:Ba:Cu=1:0.97:3.39로 나타났으며 임계온도 $T_{c on}$=86K, $T_{c zero}$=61K이다. 연구 결과 우수한 초전도체 박막을 제작하기 위해 계속적인 연구가 필요하며 불순물 잔류도 고려하여야 한다.

  • PDF

A Study on the Deposition Transfer state of Organic Thin Films(Arac.acid) (유기박막(Arac.acid)의 누적전이상태에 관한 연구)

  • Chung, Hun-Sang;Song, Jin-Won;Lee, Kyung-Sup;Jun, Yon-Su;Chon, Woo-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.57-60
    • /
    • 2001
  • The characterization of organic Metal/Insulator/Metal(MIM) devices were investigated from LB films. The physicochemical properties of the LB films were by UV absorption spectrum and AFM. We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 2, 10, 30[mN/ml The stable images are probably due to a strong interaction between the monolayer film and glass substrate. We are unable to obtain molecule resolution in images of the films but did see a marked contrast between images of the bare substrate and those with the network structure film deposited onto it.

  • PDF

Fabrication of GHz-Band FBAR with AIN Film on Mo/SiO2/Si(100) Using MOCVD (Mo/SiO2/Si(100)기판 위에 MOCVD법으로 성장시킨 AIN박막이용 GHz대역의 FBAR제작에 관한 연구)

  • Yang, Chung-Mo;Kim, Seong-Kweon;Cha, Jae-Sang;Park, Ku-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2006
  • In this paper, it is reported that film-bulk-acoustic resonator with high c-axis oriented AIN film on $Mo/SiO_2/Si(100)$ using metal-organic-chemical-vapor deposition was fabricated. The resonant frequency and anti-resonant frequency of the fabricated resonator were observed with 3.189[GHz] and 3.224[GHz], respectively. The quality factor and the effective electromechanical coupling coefficient(${k_{eff}}^2$) were measured with 24.7 and 2.65[%], respectively. The conditions of AIN deposition were substrate temperature of $950[^{\circ}C]$, pressure of 20Torr, and V-III ratio of 25000. A high c-axis oriented AIN film with $4{\times}10^{-5}[\Omega{cm}]$ resistivity of Mo bottom electrode and $4[^{\circ}]$ of AIN(0002) full-width at half-maximum(FWHM) on $Mo/SiO_2/Si(100)$ was grown successfully. The FWHM value of deposited AIN film is useful for the RF band pass filter specification for GHz-band wireless local area network.

Numerical Modeling for GaN Deposition by MOCVD: Effects of the Gas Inlet

  • Yang, Wonkyun;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.23 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • GaN deposition equipment and processes for the fabrication of white LEDs (Light Emitting Diode) using MOCVD (Metal Organic Chemical Vapor Deposition) were numerically modeled to analyze the effects of a reactive gas introduction strategy. The source gases, TMGa and $NH_3$, were injected from a shower head at the top of the chamber; the carrier gases, $H_2$ or $N_2$, were introduced using two types of injection structures: vertical and horizontal. Wafers sat on the holder at a radial distance between 100 mm and 150 mm. The non-uniformity of the deposition rates for vertical and horizontal injection were 4.3% and 3.1%, respectively. In the case of using $H_2$ as a carrier gas instead of $N_2$, the uniform deposition zone was increased by 20%.

Conducting ZnO Thin Film Fabrication by UV-enhanced Atomic Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.211.1-211.1
    • /
    • 2013
  • We fabricate the conductive zinc oxide(ZnO) thin film using UV-enhanced atomic layer deposition. ZnO is semiconductor with a wide band gap(3.37eV) and transparent in the visible region. ZnO can be deposited with various method, such as metal organic chemical vapour deposition, magnetron sputtering and pulsed laser ablation deposition. In this experiment, ZnO thin films was deposited by atomic layer deposition using diethylzinc (DEZ) and D.I water as precursors with UV irradiation during water dosing. As a function of UV exposure time, the resistivity of ZnO thin films decreased dramatically. We were able to confirm that UV irradiation is one of the effective way to improve conductivity of ZnO thin film. The resistivity was investigated by 4 point probe. Additionally, we confirm the thin film composition is ZnO by X-ray photoelectron spectroscopy. We anticipate that this UV-enhanced ZnO thin film can be applied to electronics or photonic devices as transparent electrode.

  • PDF