• 제목/요약/키워드: Metal organic deposition

검색결과 461건 처리시간 0.039초

Comparative study of InGaN/GaN multi-quantum wells in polar (0001) and semipolar (11-22) GaN-based light emitting diodes

  • Song, Ki-Ryong;Oh, Dong-Sub;Shin, Min-Jae;Lee, Sung-Nam
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.295-299
    • /
    • 2012
  • We investigated the crystal and the optical properties of GaN-based blue light emitting diodes (LEDs) which were simultaneously grown on c-plane (0001) and semipolar (11-22) GaN templates by using metal-organic chemical vapor deposition (MOCVD). The X-ray rocking curves (XRCs) full width at half maximums (FWHMs) of c-plane (0001) and semipolar (11-22) GaN templates were 275 and 889 arcsec, respectively. In addition, high-resolution X-ray ω-2θ scan showed that satellite peaks of semipolar (11-22) InGaN quantum-wells (QWs) was weaker and broader than that of c-plane (0001) InGaN QWs, indicating that the interface quality of c-plane (0001) QWs was superior to that of semipolar (11-22) QWs. Photoluminescence (PL) and electroluminescence (EL) results showed that the emission intensity and the FWHMs of polar c-plane (0001) LED were much higher and narrower than those of semipolar (11-22) LED, respectively. From these results, we believed that relative poor crystal quality of semipolar (11-22) GaN template might give rise to the poor interfacial quality of QWs, resulting in lower output power than conventional c-plane (0001) GaN-based LEDs.

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

Si3N4 박막의 유기발광소자 수분침투 방지막으로의 응용 (Application of Si3N4 Thin Film as a Humidity Protection Layer for Organic Light Emitting Diode)

  • 김창조;신백균
    • 한국전기전자재료학회논문지
    • /
    • 제23권5호
    • /
    • pp.397-402
    • /
    • 2010
  • In this paper, we studied WVTR(water vapor transmission rate) properties of $Si_3N_4$ thin film that was deposited using TCP-CVD (transformer coupled plasma chemical vapor deposition) method for the possibility of OLED(organic light emitting diode) encapsulation. Considering the conventional OLED processing temperature limit of below $80^{\circ}C$, the $Si_3N_4$ thin films were deposited at room temperature. The $Si_3N_4$ thin films were prepared with the process conditions: $SiH_4$ and $N_2$, as reactive gases; working pressure below 15 mTorr; RF power for TCP below 500 W. Through MOCON test for WVTR, we analyzed water vapor permeation per day. We obtained that WVTR property below 6~0.05 gm/$m^2$/day at process conditions. The best preparation condition for $Si_3N_4$ thin film to get the best WVTR property of 0.05 gm/$m^2$/day were $SiH_4:N_2$ gas flow rate of 10:200 sccm, working pressure of 10 mTorr, working distance of 70 mm, TCP power of 500 W and film thickness of 200 nm. respectively. The proposed results indicates that the $Si_3N_4$ thin film could replace metal or glass as encapsulation for flexible OLED.

MOCVD 법에 의한 Bi-Te계 열전소재 제조 및 박막형 열전소자 제작 (Growth of Bi-Te Based Materials by MOCVD and Fabrication of Thermoelectric Thin Film Devices)

  • 권성도;주병권;윤석진;김진상
    • 한국전기전자재료학회논문지
    • /
    • 제21권12호
    • /
    • pp.1135-1140
    • /
    • 2008
  • Bismuth-telluride based thin film materials are grown by Metal Organic Chemical Vapor Deposition(MOCVD). A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the sample was heated by heating block and the voltage output measured. As expected for a thermoelectric generator, the voltage decreases linearly, while the power output rises to a maximum. The highest estimated power of $1.3{\mu}W$ is obtained for the temperature difference of 45 K. we provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which may have nanostructure with high thermoelectric properties.

LS-MOCVD OF BARIUM STRONTIUM TITANATE THIN FILMS USING NOVEL PRECURSORS

  • Kwon, Hyun-Goo;Oh, Young-Woo;Park, Jung-Woo;Lee, Young-Kuk;Kim, Chang-Gyoun;Kim, Do-Jin;Kim, Yunsoo
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.19-19
    • /
    • 2002
  • Perovskite-type titanate dielectrics have attracted much attention in memory devices such as DRAMs or FeRAMs due to their high dielectric constants. However, low volatility of the Ba, Sr, Pb or Zr precursors with only thd ligands has limitations in obtaining high quality thin films by liquid source metal organic chemical vapor deposition (LS-MOCVD) processes. To improve the volatility of these precursors, many attempts have been made such as adding polyether ligands to satisfy the coordinative saturation. We report the synthesis of new precursors Ba(thd)₂(tmeea) and Sr(thd)₂(tmeea), where tmeea = tris[2-(2-methoxyethoxy)ethyl]amino, and LS-MOCVD of barium strontium titanate (BSTO) thin films using these precursors. Due to increased basicity of amines compared with ethers, it is expected that the nitrogen-donor ligand will make a strong bond to a metal than an analogous oxygen-donor ligand, consequently improving the volatility and thermal behavior of these precursors. Thin films of BSTO were grown on Pt(111)/SiO₂/Si(100) substrates by LS-MOCVD using a cocktail source consisting of the conventional Ti precursor Ti(thd)₂(O/sup i/Pr), and these new Ba and Sr precursors. As-grown films were characterized by XPS, SEM, XRD, XRF, and C-V and I-V measurements. BSTO films grown at 420℃ were stoichiometric barium strontium titanate with very smooth surface morphology and their dielectric constants were found to be as targe as 450. Dependence of the composition, microstructure and the electrical properties of the BSTO films on the growth temperature, annealing temperature, working pressure, and the composition of the cocktail source will be discussed.

  • PDF

PLASMA POLYMERIZED THIN FILMS GROWN BY PECVD METHOD AND COMPARISON OF THEIR ELECTROCHEMICAL PROPERTIES

  • I.S. Bae;S.H. Cho;Park, Z. T.;Kim, J.G.;B. Y. Hong;J.H. Boo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.119-119
    • /
    • 2003
  • Plasma polymerized organic thin films were deposited on Si(100) glass and Copper substrates at 25 ∼ 100 $^{\circ}C$ using cyclohexane and ethylcyclohexane precursors by PECVD method. In order to compare physical and electrochemical properties of the as-grown thin films, the effects of the RF plasma power in the range of 20∼50 W and deposition temperature on both corrosion protection efficiency and physical properties were studied. We found that the corrosion protection efficiency (P$\_$k/), which is one of the important factors for corrosion protection in the interlayer dielectrics of microelectronic devices application, was increased with increasing RF power. The highest P$\_$k/ value of plasma polymerized ethylcyclohexane film (92.1% at 50 W) was higher than that of the plasma polymerized cyclohexane film (85.26% at 50 W), indicating inhibition of oxygen reduction. Impedance analyzer was utilized for the determination of I-V curve for leakage current density and C-V for dielectric constants. To obtain C-V curve, we used a MIM structure of metal(Al)-insulator(plasma polymerized thin film)-metal(Pt) structure. Al as the electrode was evaporated on the ethylcyclohexane films that grew on Pt coated silicon substrates, and the dielectric constants of the as-grown films were then calculated from C-V data measured at 1㎒. From the electrical property measurements such as I-V ana C-V characteristics, the minimum dielectric constant and the best leakage current of ethylcyclohexane thin films were obtained to be about 3.11 and 5 ${\times}$ 10$\^$-12/ A/$\textrm{cm}^2$ and cyclohexane thin films were obtained to be about 2.3 and 8 ${\times}$ 10$\^$-12/ A/$\textrm{cm}^2$.

  • PDF

유/무기 나노 복합체를 이용한 PAN계 탄소섬유 토우 유연 전극의 전기화학적 특성 평가 및 비효소 전기화학 센서의 활용 (Electrochemical Properties of PAN-based Carbon Fibers Tow Electrode Using Organic/inorganic Nanocomposite and Its Application of Non-enzymatic Sensor)

  • 송민정
    • Korean Chemical Engineering Research
    • /
    • 제62권3호
    • /
    • pp.233-237
    • /
    • 2024
  • 본 연구는 유/무기 나노복합체를 이용한 PAN계 탄소섬유 토우(PAN-based carbon fibers tow) 기반의 유연 전극 제작 및 이를 활용한 비효소 전기화학 센서 개발에 대한 것으로, 전도성 고분자 polyaniline (PANI)와 금속 산화물 CuO을 유/무기 나노복합체 소재로 사용하였으며 글루코스를 전기화학 센서 타겟으로 적용하였다. 전극 제작을 위해 시판된 CFT는 열처리를 통한 사이징(sizing) 제거와 전기화학적 산화에 의한 표면 활성화의 전처리 공정을 거쳐 사용되었다. 유/무기 나노복합체는 전기화학적 중합 및 증착법을 통해 전처리된 CFT 표면 위에 순차적으로 합성되어 최종 CFT/PANI/CuO NPs 전극이 제작되었다. CFT/PANI/CuO NPs 전극의 전기화학적 특성 및 센싱 성능은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분광법을 이용하여 분석되었다. CFT/PANI/CuO NPs 전극은 전도성 고분자과 금속 산화물의 접목에 의해 전기 전도도 향상 및 우수한 전자 전달, 감응시간 단축, 비표면적 증가 등 개선된 전기화학적 특성과 증가된 감도, 넓은 선형 농도 구간, 높은 선택도 등 향상된 글루코스 센싱 성능을 보였다.

Al0.3Ga0.7N/GaN 및 Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN 이종접합 구조에서 운반자 구속 효과와 이차원 전자가스의 광학적 특성 (Effect of Carrier Confinement and Optical Properties of Two-dimensional Electrons in Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/GaN/Al0.15Ga0.85N/GaN Heterostructures)

  • 곽호상;이규석;조현익;이정희;조용훈
    • 한국진공학회지
    • /
    • 제17권4호
    • /
    • pp.359-364
    • /
    • 2008
  • 금속 유기화학 증착기 (metal-organic chemical vapor deposition)를 이용하여 사파이어 기판 위에 $Al_{0.3}Ga_{0.7}N$/GaN 및 $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ 이종접합 구조들을 성장하고, 이들 시료의 전자와 정공들 간의 구속 효과를 조사하기 위하여 광학적, 구조적 특성을 비교하였다. 저온 (10 K) photoluminescence 실험으로부터 $Al_{0.3}Ga_{0.7}N$/GaN 단일 이종접합 구조의 경우 3.445 eV에서 단일의 이차원 전자가스 (two-dimensional electron gas; 2DEG) 관련된 발광을 관찰한 반면, $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ 다중 이종접합 구조의 경우 3.445 eV에서 뿐만 아니라, 3.42 eV에서 추가적인 2DEG 관련된 발광을 관찰 할 수 있었다. 이 두 개의 2DEG 관련 신호들의 근원을 조사하기 위하여 $Al_{0.3}Ga_{0.7}N/GaN/Al_{0.15}Ga_{0.85}N/GaN$ 다중 이종접합구조에서의 에너지 밴드 구조를 이론적으로 계산하여 실험과 비교한 결과, 하나의 2DEG에 의한 서로 다른 버금띠로 부터가 아닌 다중 구조에 형성된 두 개의 2DEG로부터의 신호로 해석되었다.