• Title/Summary/Keyword: Metal grid

Search Result 130, Processing Time 0.028 seconds

ANALYSIS OF WELD METAL STRUCTURE AND MECHANICAL BEHAVIOUR ENVISAGING PHASE CHANCE LATENT HEAT EFFECT

  • Rajesh S.R.;Bang Han Sur;Joo Sung Min;Bang Hee Sun
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.283-285
    • /
    • 2004
  • In this paper an important class of problems in welding which come under the category of phase change is considered, Solidification and melting are important process in welding field. Phase change problems are accompanied by either absorption or release of thermal energy i,e, heat transfer process. This is complicated by the release or absorption of the latent heat of fusion at the solid-liquid interface. In this study the liberation of latent heat is taken in to account using fixed grid method. The numerical simulation and the finite element codes for the heat transfer analysis including the latent heat term has been developed based on this fixed grid method.

  • PDF

An Influence of Material of Metal Grid for Interrupting Property (MCCB내부 금속 그리드 재질이 차단성능에 미치는 영향)

  • Kim, Kil-Sou;Yoon, Jae-Hun;Lim, Gee-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.101-101
    • /
    • 2010
  • Power distribution system requires the transformer with higher capacity than ever, but this ever, but this may be the cause of the increasing of short circuit current in contrast to conventional one when short-circuit accident is occurred. Therefore molded case circuit breaker improved in aspects of interrupting capacity of short circuit current in this system is needed. The arrangement and quality of the material of grids in arc quenching room are also designed optimally by the analysis of arc driving forces.

  • PDF

Optimal Design of a Nuclear Fuel Rod Support Structure Based on Contact Stress Analysis (접촉응력해석을 통한 핵연료 지지격자 구조물의 최적설계)

  • Jang, In-Gwun;Kwak, Byung-Man;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.731-736
    • /
    • 2000
  • An optimal design method is adopted for a spacer grid in nuclear power plant. It is made of punched sheet metal process, functioning as springs and dimples supporting fuel rods. For stress analysis of the assembled fuel rod support, a typical cell out of the repeated pattern in the assembly is modeled using 4-node shell elements. A commercial code, ABAQUS, is used for detailed analysis of contacting phenomena with friction. For the optimization, design varibles are taken from geometric parameters representing the shape of the bent leaf spring part and mating contact region with fuel rod. Objective function is considered in relation to mechanical functions and durability. Maximum yon Mises stress is considered in relation to constrained contact stress.

  • PDF

Polarization Selective Blazed Grating Employing Metal-slit Arrays (금속 슬릿 배열로 구성된 편광 선택 가능한 블레이즈드 회절 격자)

  • Jung, Young Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.2
    • /
    • pp.53-57
    • /
    • 2013
  • A polarization selective blazed grating employing metal-slit arrays was proposed. Nano-scale metal-slits were applied to the micro-scale blazed grating to give the functionality of polarization selection. Case study was carried out for the proposed structure utilizing numerical FDTD (Finite Difference Time Domain method) simulation. Diffraction efficiency of 77.61% and polarization extinction ratio of 8.99 was achieved with arbitrary parameters and diffraction efficiency of 64.22% and polarization extinction ratio of 81.09 was achieved with other parameters to enhance extinction ratio.

Numerical Simulation of 3-Dimensional Fluid Flow and Dust Concentrations in a Steel Foundry (제강 작업장내 삼차원 유동장 및 먼지농도의 수치 모사)

  • Cho, Hyun-Ho;Hong, Mi-Ok;Cho, Seog-Yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The steel foundries with electric arc furnaces handling metal scraps have recently gained an attention as a potential source of dusts. The present study focuses on the analysis of dust emissions and removals during furnace charging and melting processes by commercial CFD software named FLUENT. A body fitted grid system consisting of 880,000 meshes was first generated by Gambit for the electric arc furnace with the capacity of 60 ton/cycle and then FLUENT was invoked to solve the corresponding NavierStokers equation for the momentum, temperature and dust concentration. The entire processes from metal charging to metal melting were simulated to investigate the unsteady behaviors of fluid flows and dust concentrations. The model simulation results showed that as the top of the electric arc furnace opened for metal charging, hot plumes bursted out from the furnace rose strongly by buoyance and escaped mostly through the main hood. Therefore, the capacity of main hoods determined the vent efficiency in the metal charging process. As the furnace was closed after the metal charging and the metal melting processes was followed, the hot flow stream stretching from the furnace to the main hood was dissipated fast and the flow from the inlet of the bottom of the left hand side to the main and monitoring hoods constituted the main stream. And there was only a slow flow in the right hand side of the furnace. Therefore, the dust concentrations were calculated higher in the left hand side of the furnace, which was consistent with observations.

Effect of metal conditioner on bonding of porcelain to cobalt-chromium alloy

  • Minesaki, Yoshito;Murahara, Sadaaki;Kajihara, Yutaro;Takenouchi, Yoshihisa;Tanaka, Takuo;Suzuki, Shiro;Minami, Hiroyuki
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • PURPOSE. The purpose of this study was to evaluate the efficacy of two different metal conditioners for non-precious metal alloys for the bonding of porcelain to a cobalt-chromium (Co-Cr) alloy. MATERIALS AND METHODS. Disk-shaped specimens ($2.5{\times}10.0mm$) were cast with Co-Cr alloy and used as adherend materials. The bonding surfaces were polished with a 600-grid silicon carbide paper and airborne-particle abraded using $110{\mu}m$ alumina particles. Bonding specimens were fabricated by applying and firing either of the metal conditioners on the airborne-particle abraded surface, followed by firing porcelain into 5 mm in diameter and 3 mm in height. Specimens without metal conditioner were also fabricated. Shear bond strength for each group (n=8) were measured and compared (${\alpha}=.05$). Sectional view of bonding interface was observed by SEM. EDS analysis was performed to determine the chemical elements of metal conditioners and to determine the failure modes after shear test. RESULTS. There were significant differences among three groups, and two metal conditioner-applied groups showed significantly higher values compared to the non-metal conditioner group. The SEM observation of the sectional view at bonding interface revealed loose contact at porcelain-alloy surface for non-metal conditioner group, however, close contact at both alloy-metal conditioner and metal conditioner-porcelain interfaces for both metal conditioner-applied groups. All the specimens showed mixed failures. EDS analysis showed that one metal conditioner was Si-based material, and another was Ti-based material. Si-based metal conditioner showed higher bond strengths compared to the Ti-based metal conditioner, but exhibited more porous failure surface failure. CONCLUSION. Based on the results of this study, it can be stated that the application of metal conditioner is recommended for the bonding of porcelain to cobalt-chromium alloys.

An Experimental Study for the CUP-CUP Axisymmetric Combined Extrusion (컵-컵형 축대칭 복합압출에 관한 실험적연구)

  • 김영득;한철호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.175-182
    • /
    • 1994
  • Effect of some process variables including area reduction, stroke advance, materials on the extrusion load, plastic flow and height ratio of upper to lower extruded parts in the cup-cup axisymmetric extrusion were experimentally investigated and analyzed. Deformed pattern is visualized by grid-marking technique using half-cut billets splitted. The influence of using split specimen and original specimen on the extrusion load and height ratio is examined by experiment.

  • PDF

Investigation on the Automatic Tool Mesh Generatio for Sheet Metal Stamping Analysis (박판성형해석을 위한 자동 툴 격자 생성에 관한 연구)

  • 유동진
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.140-151
    • /
    • 2000
  • The finite element mesh approach for tool surface description is applied effectively to analyze sheet metal stamping processes. To improve the mesh quality and the stability of the mesh generation process, a gybrid method based on the grid approach and the Delaunay triangulation is proposed in the present work. In the present study, a general method for the mathematical description of arbitrarily shaped tool surface is proposed by introducing the parametric surface approach. A polynomial function employed to describe the base parametric surface and the boundary curves are defined to describe arbitrary three-dimensional trimmed surfaces. To verify the validity of the proposed method, automatic mesh generation is carried out for some shosen complicated parts including actual automotive panel.

  • PDF

Deformation Characteristics in Sheet Metal Forming with Small Ball (소형 구를 이용한 박판 성형에서의 변형특성)

  • 심명섭;박종진
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Recently, the technology of incremental forming for sheet metal components has drawn attention for small-batch productions. In the present investigation, a forming tool containing a freely-rotating ball was developed and applied to forming of various shapes with full annealed Al 1050 sheet. Deformation characteristics occurring during forming with this tool was examined through FEM analysis and grid measurement. It was found that deformation modes developed along a straight path and around a corner are close to those of plane-strain and equi-biaxial stretching, respectively, and that cracks occur mostly at corners for the same depth of tool. FEM analysis was successfully applied to this special type of forming process and provided comparable results to the measurements from experiment.

  • PDF

Metal Grids Embedded Transparent Conductive Electrode with Flexibility and Its Applications

  • Jung, Sunghoon;Lee, Seunghun;Kim, Jong-Kuk;Kang, Jae-Wook;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.314-314
    • /
    • 2013
  • Recently, flexibility is one of the hottest issues in the field of electronic devices. For flexible displays or solar cells, a development of transparent conductive electrodes (TCEs) with flexibility, bendability and foldability is an essential element. Hundreds of nanometers indium-tin-oxide (ITO) films have been widely used and commercialized as a transparent electrode, but their brittleness make them difficulty to apply flexible electronics. Many researchers have been studying for flexible TCEs such as a few layers of graphene sheets, carbon nanotube networks, conductive polymer films and combinations among them. Although gained flexibility, their transmittance and resistivity have not reached those of commercialized ITO films. Metal grids electrode cannot act as TCEs only, but they can be used to lower the resistance of TCEs with few losses of transmittance. However, the possibility of device shortage will be rise at the devices with metal grids because a surface flatness of TCEs may be deteriorated when metal grids are introduced using conventional methods. In our research, we have developed hybrid TCEs, which combined tens of nanometers ITO film and metal grids which are embedded in flexible substrate. They show $13{\Omega}$/${\Box}f$ sheet resistance with 94% of transmittance. Moreover, the sheet resistance was maintained up to 1 mm of bending radius. Also, we have verified that flexible organic light emitting diodes and organic solar cells with the TCEs showed similar performances compared to commercial ITO (on glass substrate) devices.

  • PDF