• Title/Summary/Keyword: Metal droplet

Search Result 84, Processing Time 0.026 seconds

Uniform metal droplet generation using laser (레이저를 이용한 균일 금속 액적 생성)

  • 강대현;양영수;김용욱;조성규;박성민
    • Laser Solutions
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2002
  • The uniform metal droplet generation using Nd-YAG laser was studied and experiment was carried out. The shape and volume of developed droplet was measured and the Young-Laplace equation and equilibrium condition of force were applied this model. The differential equation predicting shape of droplet using equilibrium condition of force instead of Navier-stokes equation was induced and numerical solution of differential equation compared with experimentation data. The differential equation was solved by Runge-Kutta method. Surface tension coefficient of droplet was determined with numerical solution relate to experimental result under the statical condition. In case of dynamic vibration, metal droplet shape and detaching critical volume are predicted by recalculating proposed model. The result revealed that this model could reasonably describe the behavior of molten metal droplet on vibration.

  • PDF

Collision Behavior of Molten Metal Droplet with Solid Surface (용융금속 액적의 고체표면 충돌거동)

  • 양영수;손광재;강대현
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.55-63
    • /
    • 2000
  • This paper presents a study of the solder bumping process. The theoretical model, based on the variational principle instead of solving the Navier-Stokes equation with moving boundaries, was developed to considered the energy dissipation in semi-solid phase and the approximate solidification time of the molten metal droplet. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of initial droplet temperature, substrate metal and initial substrate temerature.

  • PDF

Evaporation Cooling of Single Droplet on a Heated Solid Surface (가열된 고체표면에 부착된 단일 액적의 증발냉각)

  • Yu, Gap-Jong;Bang, Chang-Hun;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.845-852
    • /
    • 2001
  • The characteristics of evaporation cooling of single droplet on a heated surface were studied experimentally. The two kinds of heater modules were tested to measure cooling characteristics of metal surface (high conductivity) and Teflon surface (low-energy surface, low conductivity). The results showed that time averaged heat flux during droplet evaporation increased exponentially with initial surface temperatures of brass, copper and steel. The heat flux and evaporation time did not varied with metal conductivities. However, the temperature drop after the deposition of droplet was larger on Teflon than on the metals. Thus, the correlation of interface temperature between liquid droplet and metal surface was proposed as a function of the initial surface temperature of heating materials, which could be applied to both metal and non-metal ones.

Collision Behavior of Molten Metal Droplet by Laser Beam (레이저 빔에 의해 생성된 금속액적의 충돌거동)

  • 김용욱;양영수
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • A molten metal droplets are deposited onto solid substrate for solid freeform fabrication, Collision dynamic and substrate heat transfer associated with solidification determine the final shape of molten metal droplets. In this study, the experimental model, based on the variational condition with substrate temperature and falling height, was produced reliable optimal data of droplet pattern.

  • PDF

A Study on the Uniform Metal-Droplet Deposition Using Laser (레이저를 이용한 균일 금속액적 적층에 관한 연구)

  • 유성복;김용욱;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.667-670
    • /
    • 2002
  • Uniform metal-droplet deposition using laser is analyzed. Using the variation principle and modeling the semi-solid phase as a non-Netwonian slurry, this model can greatly save the computational expenses that conventional numerical procedures have suffered from. The simulation results revealed that the developed model could reasonably describe the collision behavior of molten metal with solid surface. Simulations were made with variation of the falling distance and time.

  • PDF

Theoretical Analysis and Experimental Characterization of DoD Metal-Jet System (DoD 메탈젯 시스템의 이론적 해석 및 실험적 분석)

  • Lee, Taik-Min;Kang, Tae-Goo;Yang, Jeong-Soon;Jo, Jeong-Dai;Kim, Kwang-Young;Choi, Byung-Oh;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. The theoretical analysis of the metal-jet nozzle system is derived by using electro-mechanical analogy. Based on the theoretical analysis results, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about 65 $\mu$m $\sim$ 70 $\mu$m, 145p1 $\sim$ 180 pl and 4m/s, which shows quite good agreement with the theoretical analysis results of the 75 $\mu$m-diameter and 220 pl-volume of droplet. In comparison with the experimental result, the errors of diameter and volume are 7% $\sim$ 13% and 18 $\sim$ 34%, respectively.

A study on the uniform metal droplet generation using Laser (레이저를 이용한 균일 금속 액적 생성에 관한 연구)

  • 박성민;양영수;김용욱
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • This paper presents a study of the uniform metal droplet generation using laser. The theoretical model, based on the variational principle instead of solving the Wavier-Stokes equation with moving boundaries, is developed. Our model is considered the Young-Laplace equation and force equilibrium conditions. Surface tension coefficient is determined under the statical condition with induced differential equation by using experimental result. In case of dynamic vibration, metal droplet shape and critical detaching volume are predicted by recalculating of proposed model. The simulation result revealed that the developed model could reasonably describe the molten metal droplet behavior on vibration with metal wire.

  • PDF

Movement of Liquid Metal Droplet in Channel by Continuous Electrowetting Effect (연속적 전기습윤 효과를 이용한 액체금속 액적의 채널 내 거동)

  • Baek, Seungbum;Won, Dong-Joon;Kim, Hojin;Kim, Joonwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.3
    • /
    • pp.217-223
    • /
    • 2016
  • In this paper, the movement of a liquid metal droplet in a channel by continuous electrowetting effect is analyzed. The channel is fabricated using two glass substrates and silicone rubber as spacers, and a mercury droplet and dilute sulfuric acid are added into the channel. The droplet is moved according to voltage applied at both ends of the channel through an electrolyte. According to the shape of the droplet and the applied voltage, the velocity of the droplet is changed. The velocity is proportional to the applied voltage and inversely proportional to the length of the droplet, both theoretically and experimentally. Contact angle hysteresis and a meniscus change were also found in the moving state. This implies the existence of a threshold in movement by Laplace pressure difference. The experiment indicated that the sliding angle was inversely proportional to the width of the droplet but that the voltage threshold was proportional to the width.

Analysis of Temperature Distribution and Residual Stress in Deposition Process of Metal Droplet by Using Laser Beam (레이저를 이용한 금속액적 적층시 온도분포와 잔류응력 해석)

  • Yun Jin-Oh;Yang Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.187-193
    • /
    • 2005
  • The temperature distribution of the deposited droplet was predicted by using the finite element analysis and it was assumed that the droplet was axisymmetrical model. The analysis of residual stress was performed with the temperature data, which is obtained from the result. Axisymmetric droplet is deposited three times to consider the actual phenomenon of droplet deposition. The analysis of the temperature distribution is respectively performed whenever the axisymmetric droplet is laminated and the residual stresses of the laminated axisymmetric droplet are calculated with the value of the temperature distribution.

Breakup Characteristics of Fuel Droplet Including Nanoparticles (나노 입자가 포함된 연료 액적의 분열 특성 연구)

  • Lee, Jae Bin;Shin, Dong Hwan;Lee, Min Jung;Kim, Namil;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.192-196
    • /
    • 2012
  • This paper reports on breakup characteristics of fuel droplet which includes metal nanoparticles. In order to develop a new injection system for nanoparticle-coated layers overcoming the conventional flame spray system, fundamental experiments were conducted to examine the interaction between a fuel droplet with nanoparticles and the external energy induced by the laser. In the experiments, this study used nickel nanoparticles whose size was under 100 nm to mix with kerosene as the fuel, and utilized a syringe pump and a metal needle to inject a fuel droplet. In particular, the Nd-YAG laser was adopted to give additional energy to the nanoparticles for evaporation of a fuel droplet containing nanoparticles. When the laser energy as 96 mJ was irradiated during the injection, it was observed that such an explosive evaporation occurred to break up a fuel droplet including nanoparticles, making the rapid increase in the ratio surface area to liquid volume. From this work, we suggest the possibility that the laser energy can be used for rapid evaporation of a fuel droplet.