• Title/Summary/Keyword: Metal die

Search Result 860, Processing Time 0.021 seconds

Development of The Pilotless Type Progressive Die for Thin Sheet Metal

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • This study reveals the thin sheet metal Process with multi-forming die that the name is progressive die, also high precision production part is made. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming progressive die as a bending working of multi-stage and peformed through the try out. Out of the characteristics of this paper that nothing might be ever seen before such as this type of research method on the all of processes of thin and high precision production part.

  • PDF

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹 가공 특성에 관한 연구)

  • 이광복;이용길;김종호
    • Transactions of Materials Processing
    • /
    • v.12 no.8
    • /
    • pp.724-729
    • /
    • 2003
  • In order to study the shearing characteristic of anti-vibration sheet metal which is used to reduce vibration noise, a blanking die was manufactured to blank a workpiece. The variables employed in this study were clearance, type of stripper plate, position of the rubber layer and type of the die design. These variables were used to study the effects on burr height, blank diameter and camber height. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, showed greater burr height. The rubber-top position of a workpiece resulted in better qualities regardless of working variables. In the comparison of diameter measurement, the use of the push-back die with a fixed stripper plate, with a 4.5% clearance, showed better accuracy. For comparing camber height, the push-back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber layer is laying on the top, blanked with a fixed stripper plate in a push-back die, with a 4.5% clearance.

Development of the Simulated Die Casting Process by using Rapid Prototyping (쾌속 조형 공정을 이용한 다이캐스팅 제품의 시작 공정 개발)

  • Kim K. D.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.180-186
    • /
    • 2002
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce Al, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared as the die-castings and the thin walls of the plaster mold cavity may not be completely fillet Because of lower mechanical properties induced by the large grain structure and incomplete Idling, the conventional plaster casting process is not suitable for the trial die-casting Process. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have runner system, are made using these patterns. Imparted pressurized vibration to molten metal has made grain structure of castings much finer and improved fluidity of the molten metal enough to obtain complete filling at thin walls which can not be filled in the conventional plaster casting process.

  • PDF

A Three-Dimensional Finite Element Analysis of Hot Square Die Extrusion Considering the Effect of Die Bearing (금형 베어링 효과를 고려한 평금형 열간 압출의 3차원 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.185-191
    • /
    • 1996
  • The Variation of die bearing is primary way to control the metal flow in hot square die extrusion process. Finite element computations are carried out to assess the influence of die bearing on metal flow and state variables. The finit element method is developed based on ALE description for a rigid-viscoplastic material. Since thermal state computational example, hot square die extrusion with varied die bearing lengths has been analyzed for the profile of a L-section.

  • PDF

Study on Application of Flexible Die to Sheet Metal Forming Process (가변금형의 박판 성형공정 적용 연구)

  • Heo, S.C.;Seo, Y.H.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.7
    • /
    • pp.556-564
    • /
    • 2009
  • Flexible forming process for sheet material using reconfigurable die is introduced based on numerical simulation. In general, this flexible forming process using the reconfigurable die has been utilized for manufacturing of curved thick plates used for hull structures, architectural structures and so on. In this study, numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. The numerical simulation and experimental verification for sheet metal forming process using a flexible forming machine that is more suitable for thick plate forming process are carried out to confirm the appropriateness of the simulation process. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation for smoothing the forming surface which is discrete due to characteristics of the flexile die. In the flexible forming process for sheet metal, effect of a blank holder is also investigated according to blank holding methods. Formability in view of occurrence of dimples is compared with regard to the various punch sizes. Consequently, it is confirmed that the flexible forming for sheet material using urethane pad has enough capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming method.

Development of Multi Forming Product Progressive Die for STS 304 Marine Part Sheet Metal (Part 2)

  • Sim, Sung-Bo;Sung, Yul-Min;Song, Young-Seok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.151-156
    • /
    • 2000
  • Ultra precision progressive die have used for above one million's lot size of production part. In the field of design and making tool for press working, the progressive die for sheet metal (STS 304, thickness : 0.5mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

development of the High Utility Progressive Die for Sheet Metal Forming (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.231-235
    • /
    • 2000
  • Precision progressive die have used for above ten thousand pieces of lot size production part. In the field of design and making tool for press working, the progressive die for sheet metal (SPC, thickness : 2mm) is a specific division. In order to prevent the defects, the optimum design of the U-bending production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal pres working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

Development of the Circular lancing Type Progressive Die for STS 304 Sheet Metal Working (Part 2)

  • Sim, Sung-Bo;Song, Young-Seok;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • Ultra precision progressive die have used for above one million's lot size of production part. In the field of design and making tool for press working, the progressive die for sheet metal (STS 304, thickness : 0.5mm) is a specific division. In order to prevent the defects, the optimum design of the production part, strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi-stage and performed try out. Out of these processes the die development could be taken for advance. Especially the result of tryout and its analysis become the characteristics of this paper (part 1 and part 2) that nothing might be ever seen before such as this type of research method on all the processes. In the part 2 of this study we treated die making and tryout mostly.

  • PDF

A Study on the Blanking Characteristic of Anti- Vibration Sheet Metal (제진 강판의 블랭킹가공 특성에 관한 연구)

  • Lee K. B.;Lee Y. G.;Kim J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.29-34
    • /
    • 2003
  • In order to study the shearing characteristics of anti-vibration sheet metal which has been bonded by resin, a blanking die of 40.02mm was manufactured to blank a material and it is used to reduce vibrational noise. The variables employed in this study were 1) Clearance 2) types of stripper plate, and 3) types of the die design technique. These variables were used to study the effects on burr height, diameter of product, and camber height. Lastly, the effect of the position of the rubber during blanking was observed. In the case of burr height from experimental investigation, the push-back die, combined with a movable stripper plate, resulted in the concentration of additional pressure between the cutting edges, meaning the crack initiation was delayed. This result was not affected by lubrication, although appropriate lubrication is preferred to enable a longer lasting die in terms of wear, which results from the presence of adhesive as the sheet metal is blanked. In the comparison of diameter measurement, the push-back die, combined with the back pressure from the knock-out plate showed a favorable precision. The use of the push back die with a fixed stripper plate, with a $4.5\%$ clearance, showed better accuracy in the diameter measurement. For comparing camber height, the push back die resulted in less cambering than the drop-through die. Also, the larger the clearance, the greater was the camber height. Considering experimental results, the shearing of anti-vibrational sheet metal is best achieved when the rubber is laying on the top, blanked with a fixed-stripper plate in a push-back die, with a $4.5\%$ clearance.

  • PDF