• Title/Summary/Keyword: Metal core

Search Result 622, Processing Time 0.026 seconds

Pollution of Heavy Metals and Sedimentation Rates in Sediment Cores from the Chinhae Bay, Korea (진해만 퇴적물의 퇴적속도와 중금속 오염)

  • Yang, Han-Soeb;kim, Seong-Soo;Kim, Gue-Buem
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.489-500
    • /
    • 1995
  • In the Chinhae Bay, Korea, sedimentation rates and sedimentary record of anthropogenic metal loads were determined by $^{210}Pb$ dating and heavy metal analysis of four sediment cores . The sedimentation rates varied from 0.16g/$cm^2$/yr(3.1mm/yr) at Sta. Ct, located within narrow waterway to 0.24g/$cm^2$/yr(4.8mm/yr) at Sta. Cl, located in Haengam Bay. Maximum contents of Mn, Zn, Cu and Cr were observed at Sta. C2 located near the mouth of Masan Bay, while minimum contents were observed at Sta. CB. Mn/Fe ratios at Sta. C2 and Sta. C4 showed gradually increasing and decreasing downward, respectively, in the upper layer of sediment cores. This suggests that Mn may be diagenetically redistributed in highly reduced environment. At Sta. C2, the concentrations of Zn and Cu began to increase from 1920s by anthropogenic input and have been remarkablely increasing since mid 1960s. At Sta. C3, located near Sungpo, anthropogenic input of these two elements has also slightly increased after 1970s. However, pollution of these two elements was not significant in Haengam Bay(Sta. Cl) and Chiljun watenway(Sta. C4). The pollution of Co, Ni and Cr was not remarkable in all core samples except surface sediment of Sta. C2. The total input of anthropogenic Zn and Cu since 1920s was estimated to be 28~792 $\mu\textrm{g}$/cm2 and 0~168$\mu\textrm{g}$/cm2, respectively. Sta. C2 showed remarkablely higher values relative to other stations: anthropogenic loads of Zn and Cu constituted 27% and 29% of the total sedimentary inventories at the present day, respectively. Fe, Ni, Cr and Co contents showed good correlation(r>0.8) with each other. Anthropogenic Zn and Cu also showed a very good positive correlation(>0.9). However, correlation between these two group of element was quite scattered, indicating different sources and geochemical behaviors.

  • PDF

A Study on Metal Surface Thickness Detection Using Indsctive Proximity Sensor (유도성 근접센서를 통한 금속표면 두께 검출에 관한 연구)

  • Park, Hwa-Beom;Lee, Seung-Jae;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.231-234
    • /
    • 2007
  • The magnetic sensor using electromagnetic principle. which transfers magnatic into electric. is the electric component.It has been widely applied to the industry, university and the reseach. However there are some problems. Not only the korean domestic sensor manufacture skills are still lower then the advanced manufacture's but also production of sensor is not well organized yet. Due to cahnging excitation cvurrent, excitation freq and the rate magnetic permeability core, there sometimes would be distorted phenomena or loaded phenomena which result in limited measurment range. Therefore, the signal conversion device should support to receive undistorted and nice output. This paper focuses on both the design of signal transform circuit using inductive proximity sensor and the signal transfer equipment (Z device) which detects thickness of painted material.

  • PDF

An Efficient Test Method for a Full-Custom Design of a High-Speed Binary Multiplier (풀커스텀 (full-custom) 고속 곱셈기 회로의 효율적인 테스트 방안)

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.830-833
    • /
    • 2007
  • In this paper, we implemented a $17{\times}17b$ binary digital multiplier using radix-4 Booth;s algorithmand proposed an efficient testing methodology for the full-custom design. A two-stage pipeline architecture was applied to achieve higher throughput and 4:2 adders were used for regular layout structure in the Wallace tree partition. Several chips were fabricated using LG Semicon 0.6-um 3-Metal N-well CMOS technology. We did fault simulations efficiently using the proposed test method resulting in the reduction of the number of faulty nodes by 88%. The chip contains 9115 transistors and the core area occupies $1135^*1545$ mm2. The functional tests using ATS-2 tester showed that it can operate with 24 MHz clock at 5.0 V at room temperature.

  • PDF

A Study of Semi Fine-blanking Mold Analysis using Finite Element Method (유한요소법을 이용한 세미 파인-블랭킹 금형 해석에 관한 연구)

  • Lee, Sang-Hun;Song, Gi-Hwan;Son, Chang-Woo;Seo, Hyoung-Jin;Seo, Tae-Il
    • Design & Manufacturing
    • /
    • v.10 no.1
    • /
    • pp.51-54
    • /
    • 2016
  • Metal sheet forming has been commonly used as the core technology in manufacturing parts of automobiles. It guarantees the highest production rate due to the process of mass production employing the press die. For precision of the product, the accuracy of the molds and its mechanic structures are considered as essential factors. One of these is fine blanking, which is utilized for the production of the metal sheet spring, with which clear sheer surfaces can be achieved in one operation from the materials. However, the current designs of press dies perform the forming analysis with the molds of rigid body, so they are focused on weight lightening by a rule of thumb. Therefore, this paper practice structural analysis about developing the semi fine-fine blanking technology. The semi fine-blanking can be run through the combination of the hydraulic cylinders and normal presses, so this paper analyze the amount of deformation according to the oil pressure. In addition, based on the plasticity of 50CrV4, the materials of the mold parts, the structural analysis and life analysis are proceeded, so they are expected to be useful as data for manufacturing the mold.

Evaluation of a Sodium-Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

  • Ahn, Sang June;Ha, Kwi-Seok;Chang, Won-Pyo;Kang, Seok Hun;Lee, Kwi Lim;Choi, Chi-Woong;Lee, Seung Won;Yoo, Jin;Jeong, Jae-Ho;Jeong, Taekyeong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.952-964
    • /
    • 2016
  • The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium-water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium-water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

A Study on Optimum Design Analysis of Bolt Locations for Metal Joint Parts of Railway Composite Bogie Frames using Sub-modeling Method (서브모델링 기법을 이용한 철도차량 복합재 대차프레임의 금속재 체결부 볼트 위치 최적화 해석 연구)

  • Kim, Jun-Hwan;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Jung-Seok
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.19-25
    • /
    • 2010
  • This paper describes the optimum design of bolt locations for metal joint parts of railway bogie frame made of glass fiber/epoxy 4-harness satin woven laminate composite and PVC foam core. The optimum design analysis was done by sub-problem approximation method using Ansys Parameter Design Language(APDL). The sub-modeling method was introduced to conduct the detailed recalculation for the only target parts and reduce calculating time. The structural analysis for composite bogie frame was performed according to JIS E 4207. The results showed that the optimum design analysis using sub-modeling method was able to obtain faster and more precise results than that of the entire model by the control of mesh size for the target parts, and the maximum Von-Mises stress has been reduced in comparison with its original dimensions due to the optimum design of bolt locations.

Study the Effects of Precursor Concentration on ZnO Nanorod Arrays by Hydrothermal Method (수열합성 법으로 성장된 산화 아연 나노로드의 전구체 농도에 따른 구조적, 광학적 특성 연구)

  • Ryu, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.73-78
    • /
    • 2009
  • Zinc Oxide (ZnO) nanorods arrays were deposited on ZnO buffered p-Si(100) substrates by hydrothermal method. The ZnO buffer layer with a thickness of 30 nm was deposited by metal oxide chemical vapor deposition at $500^{\circ}C$. The structural and optical properties of ZnO nanorods arrays controlled by precursor concentrations from 0.06 to 0.5 M were studied by FE-SEM(field emission scanning electron microscopy), XRD(X-ray diffraction), and PL(photoluminescence), respectively. It was found that the structural and optical properties of ZnO nanorods arrays are changed significantly with increase of precursor concentration. The sizes of diameter and length of nanorods were increased as the concentration increase, and good optical property was shown with the concentration of 0.3 M.

Marco and Microscopic Observations of Fatigue Crack Growth Behavior in API 2W Gr. 50 Steel Joints (API 2W Gr. 50 강재 용접부의 피로균열전파거동의 거시적 및 미시적 관찰)

  • Sohn, Hye-Jeong;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.73-80
    • /
    • 2012
  • It is well known that a considerable amount of scatter is shown in experimental results relating to fatigue crack growth even under identical and constant amplitude cyclic loading conditions. Moreover, flux cored arc welding (FCAW) is a common method used to join thick plates such as the structural members of large scale offshore structures and very large container ships. The objective of this study was to investigate the macro- and microscopic observations of the fatigue crack growth (FCG) behavior of the FCAWed API 2W Gr. 50 steel joints typically applied for offshore structures. In order to clearly understand the randomness of the fatigue crack growth behavior in the materials of three different zones, the weld metal (WM), heat affected zone (HAZ), and base metal (BM), experimental fatigue crack growth tests for each of five specimens were performed on ASTM standard compact tension (CT) specimens under constant amplitude cyclic loading. Special focus was placed on the fatigued fracture surfaces. As a result, a different behavior was observed at the macro-level, depending on the type of material property: BM, HAZ, or WM. The variability in the fatigue crack growth rate for WM was higher than that of BM and HAZ.

The investigation of tracking resistant sheath material for ADSS Optic cable (ADSS 광 케이블 시스용 내 트래킹 재료의 특성에 관한 연구)

  • Lee, Jung-Hee;Seo, Il-Gun;Whang, Sun-Ho;Lee, Gun-Joo;Bak, Seung-Yup;Kim, Kyeung-Min;Lee, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.102-105
    • /
    • 2002
  • ADSS(All Dielectirc Self-Supporting) cable installed under high voltage power cable line suffers a variety of environmental influence, rain, wind, snow fall, chemical pollution, salt fog and electrical stress. Its lifetime is required to be at least 20 years with this harsh weathering condition. The electrical stress under high voltage power line gives rise to dry band arcing and tracking, the severest damage, on the outer sheath of cable. Finally tracking might penetrate sheath and cause the break-down of ADSS cable. Tracking resistant sheath material, therefore, should be used to protect the core of ADSS from dry band arcing and to be sure long lifetime. In this work, we discuss various commercial tracking resistant material to investigate the way of track resistance and compare their mechanical, electrical, weathering and tracking properties through serial experiments. We found track resistant material is categorized into two main type : polyethylene with metal hydroxide and polyethylene with reduced carbon black. The Liquid contaminant, Inclined plane Tracking and Erosion test says the time to track of tracking resistant material with metal hydroxide has a little longer time to track in the high applied voltage than that with carbon black, but mechanical and weathering properties were inferior to.

  • PDF

Effects of High Current and Welding Wire Diameter on the Magnesium Vaporization and Mechanical Properties of Al5083 Arc Welds (대전류 및 용가재 직경에 따른 Al5083 아크 용접부 마그네슘 기화 및 기계적 성질)

  • Kwon, Heimi;Park, Chul-Ho;Hong, In-Pyo;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.84-89
    • /
    • 2013
  • The demand of LNG tank and the constituting material, i.e., the Al5083 thick plate, increased due to the rapid growth LNG market. To weld the Al5083 thick plate, the gas metal arc welding (GMAW) of high current is necessary to increase manufacturing productivity incurred by the multi pass welding. However, the arc welding vaporizes the volatile element such as magnesium (Mg). This phenomenon changes the Mg composition of the weld metal and the mechanical properties. The study investigated the weldability of Al5083 alloys after conducting high current GMAW. The Al5083 alloy was welded by using different size of welding wires and high current (800-950A). As the arc current increased from 800A to 950A, the mechanical strength decreased and the secondary dendrite arm spacing (SDAS) increased. Even though the arc current increased SDAS, the mechanical strength decreased due to the Mg loss in the weldment. The large diameter of welding wire decreased the dilution of the weld, therefore increasing the Mg content and the strength of the weld. For the reason, the content of Mg in welds was a major parameter to determine the mechanical property for the high current GMAW. For the arc current between 800A and 950A, the yield strength of the weldments showed a relationship with the weight percent of Mg content ($X_{Mg}$): Y.S = 27.9($X_{Mg}$)-11.