• Title/Summary/Keyword: Metal compounds

Search Result 779, Processing Time 0.033 seconds

Antioxidant Effect of Hederagenin 3-O-b-D-Glucopyranosyl(1→3)-a-L-Rhamnopyranosyl(1→2)-a-L-Arabinopyranoside (HDL) Isolated from Root Bark of Ulmus davidiana (유근피로부터 분리한 hederagenin 3-O-b-D-glucopyranosyl(1→3)-a-L-rhamnopyranosyl(1→2)-a-L-arabinopyranoside (HDL)의 항산화 효과)

  • Bong, Jin-Gu;Park, Yoon-Yub
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.281-291
    • /
    • 2010
  • We investigated the antioxidant effects of hederagenin 3-O-b-D-glucopyranosyl($1{\rightarrow}3$)-a-L-rhamnopyranosyl($1{\rightarrow}2$)-a-L-arabinopyranoside (HDL) isolated from root bark of Ulmus davidiana on the activity of enzymes related to reactive oxygen species (ROS) in human osteosarcoma U2OS cells. Cobalt chloride ($CoCl_2$), a transition metal, was used as an inducer of oxidative stress, generating hydrogen peroxide ($H_2O_2$) via increasing xanthine oxidase (XO) activity. The increased levels of $H_2O_2$, XO, ferritin, and ferritin iron by $CoCl_2$ were diminished effectively by co-treatment with HDL in U2OS cells. Furthermore, decreased levels of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) by $CoCl_2$ were highly increased by co-treatment with HDL in U2OS cells; however, the levels of glutathione peroxidase (GPx) did not change. The increased contents of TBARS related to lipid peroxidation were significantly reduced by HDL in U2OS cells. The concentration of GSH changed in a pattern that went against regulated TBARS by $CoCl_2$ and HDL. We examined the expression of p53, $p21^{CIP1/WAF1}$, and $p27^{KIP1}$ proteins related to oxidative stress and cell cycle regulation. As a result, the expression of $p27^{KIP1}$ modulated by $CoCl_2$ was not changed by HDL. However, the expression of p53 and $p21^{CIP1/WAF}$ increased by $CoCl_2$ was reduced by HDL in U2OS cells. Together with alteration of p53 and $p21^{CIP1/WAF1}$ proteins, the accumulated cells at G1 phase by $CoCl_2$ was decreased by HDL in U2OS cells. Our data suggests that HDL inhibits $CoCl_2$-generated ROS in U2OS cells, providing potentially new antioxidant compounds that are isolated from natural products.

A Study on the Water Quality of Reservoir Tank in the Building Complex on Jeonnam Area (대형건축물 저수조의 수질실태 및 개선방안에 관한 연구)

  • Lee, J.H.;Lee, H.H.;Kim, H.B.;Ahn, G.W.;Park, K.N.;Kim, Y.K.;Bae, J.S.;Mun, H.;Park, C.U.;Oh, E.H.;Park, S.I.;Seo, Y.G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.59-77
    • /
    • 2000
  • This study was carried out to investigate on several factors, which contaminative the water quality through the water pipe during feeding water, in 42 largescaled apart-ments(total 84 cases) and assayed the Volatile Organic Compounds(VOCs) and concen-tration of heavy metals that inflow and outflow in reservior water in Jeonnam area(Mokpo, Suncheon, Yeosu) from January 1999 to December 1999. The results obtained were summarized as follows ; 1. The quality of the water pipe composition in the order of frequency in the quality of water pipes were Copper(45.2%)> Zinc(38.9%)> Stainless steel(9.5%)> PVC(4.8%)> PM(2.4%) in observing 42 sites. All of the drain pipes were used the cast iron quality. 2. The result of certification curve from 12 items(17kind) of VOCs was $1.0-4.0{\mu{g}}/{\ell}$ range, a coefficient of correlation was shown 0.99 over. A MDL of each substance range was within $0.1-1.0{\mu{g}}/{\ell}$. 3. The result of the assay, 5 kinds(Viny chloride, Dichloromethane, Ethylbenzene, M,P-xylene, Styrene) of the VOCs of 14 kinds was not detected and the other items were detected slightly. The detection rate of one item and over in total VOCs samples, were 25.9% in inflow and 27.9% in outflow. And frequency of detect in inflow/outflow of THM(Chloroform, Bromodichloro-methane, Dibromochloromethane, Bromoform) were shown higher than 94.1%, 97.0% each stages. It comes to the conclusion that all of the samples were reason able for drinking water standards. 4. The coefficient of correlation were reasonable, it shown 0.999 over in $0.1-1.0{\mu{g}}/{\ell}$ of a measuring range conditions of 4kinds in organic substance(Zn, Cu, Fe, Mn). 5. The results were showed suitability in 78 cases(92.9%) and unsuitability in 6 cases (7.1%), in 84 cases of in organic substances. Compare to inflow stage, mean concentrations of heavy metal, were increased slightly in Zn, Cu, Fe except Mn than outflow stage. The result of the mean concentration in organic substance inflow and outflow in the apartment water tank using Pair-compared T-test, in 95% reliance index, were $0.179mg/{\ell}(0.151-0.307mg/{\ell})$ in Zinc, $0.136mg/{\ell}(0.113-0.230mg/{\ell})$ in Copper, $0.052mg/{\ell}(0.048-0.098mg/{\ell})$ in Fe, and there was a bit growing tendency but there was no differece in Mn. 6. The mean concentration of Copper which used Cu pipe as a water supply pipe in apartment were $0.216mg/{\ell}(0.161-0.338mg/{\ell})$ in case of the Zine pipe were $0.286mg/{\ell}(0.204-0.435mg/{\ell})$. It shows that the detection rate was more higher than the other material used in Cu or Zn as the water supply pipe. We supposed to Cu and Zn substance were gushing out water supply pipe.

  • PDF

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

Analysis of Characterization in Commercial Extra Virgin Olive Oils (유통 압착올리브유의 이화학적인 특성)

  • Nam, Ha-Young;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.866-873
    • /
    • 2007
  • To analyze and differentiate volatile compounds of 13 extra virgin olive oils from market, solid-phase micro extraction (SPME) GC-MS and electronic nose (EN) equipped with metal oxide sensors were applied. The volatiles identified in extra virgin olive oils include hexanal, 4-hexen-1-ol, (Z)-3-hexen-1-ol, acetic acid, and 2,4-dimethyl-heptane, etc. Response from EN was analysed by the principal component analysis. Proportion of the first Principal component was 99.70%, suggesting that each aroma pattern of the 13 extra virgin olive oils could be discriminated by EN. Fatty acid compositions were oleic (61.1${\sim}$77.9 mole%), palmitic (11.7${\sim}$16.5 mole%), linoleic (4.7${\sim}$9.7 mole%), stearic (2.5${\sim}$2.9 mole%), Palmitoleic (0.8${\sim}$2.4 mole%), and linolenic acid (0.7${\sim}$1.2 mole%). In color study, extra virgin olive oil showed $L^{\ast}$ value of 81.7${\sim}$92.9, $a^{\ast}$ value of -28.3${\sim}$13.5 and $b^{\ast}$ value of 52.2${\sim}$139.0. Total phenol and ${\alpha}-tocopherol$ contents were 6.2${\sim}$24.9 mg/100 g and 5.5${\sim}$12.8 mg/100 g, respectively. In Rancimat test, the induction period of 13 extra virgin olive oils showed 31.76${\sim}$54.04 hr while their POV ranged from 13.5 to 22.9 meq/kg oil.

Changes in Physicochemical Characteristics of Squid upon Acid and Heat Treatment (산 및 열처리에 따른 오징어의 이화학적 특성변화)

  • Lee, Hye-Young;Kim, Seong-Ho;Kim, Duk-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.539-549
    • /
    • 2012
  • In order to acquire basic data on the development of squid processing food, we investigated changes in the composition of boiled squid upon heat treatment ($100^{\circ}C$), acid treatment (acetic acid, 0~5%), and pre-boiling ($55^{\circ}C$, $80^{\circ}C$). The proximate composition of squid was 73~78% moisture and 19~24% crude protein, treatment with acid solution had a significant effect on the proximate composition of boiled squid (p<0.05). The major free sugars were ribose and glucose in all treatment samples. The $55^{\circ}C$ pre-boiled sample had lower levels of glucose than the other samples. The total free sugar content of the non-peeled sample was the highest, followed by the $80^{\circ}C$ pre-boiled sample, whereas the sugar content in the $55^{\circ}C$ pre-boiled sample was very low. With regards to amino acid content, proline was the highest in all samples, followed by taurine and histidine. Treatment with acid solution had a significant effect on the total free amino content of boiled squid (p<0.05). The total free amino acid content of the $55^{\circ}C$ pre-boiled sample was the highest, followed by the $80^{\circ}C$ pre-boiled sample and non-peeled sample. Inosine and related compounds were not detected in any of the samples, and the adenosine triphosphate (ATP) content was low. The hypoxanthine contents of the $55^{\circ}C$ and $80^{\circ}C$ pre-boiled samples were the highest, the adenosine monophosphate (AMP) and inosine monophosphate (IMP) contents were similar, and the IMP content of the non-peeled sample was higher than those of the peeled samples. The palmitic acid content was very high and constituted 40% of total saturated fatty acids. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) contents were also high and constituted 60% of total unsaturated fatty acids. Of these, DHA content was the highest, followed by palmitic acid and EPA, which accounted for about 85% of total fatty acids. No difference in fatty acid content was observed between acid treatment and pre-boiling. The mineral P content was the highest on average in all boiled squid samples, followed by K, Na, Mg, and Ca contents. In addition, the pre-boiling temperature and acid solution concentration had significant effects on the mineral content. Further, heavy metal, Cd, Pb, and As contents were detected only at trace amounts, and their levels were lower than standard and permissible amounts for food.

Environmental Pollutants in Streams of Andong District and Insect Immune Biomarker (안동지역 하천의 환경오염물질과 곤충면역 생체지표 분석)

  • Ryoo Keon Sang;Ko Seong-Oon;Cho Sunghwan;Lee Hwasung;Kim Yonggyun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams near Andong, Korea in May 2004. To assess the degree of environmental pollution of each stream, chemical pollutants such as total notrogen (T-N), total phosphorus (T-P), chemical oxygen demand (COD), heavy metals, organophosphorus pesticides, organochlorine pesticides, and dioxin-like PCB congeners were analyzed by standard process tests or U.S. EPA methods. In addition, biomarkers originated from insect immune systems of beet armyworm, Spodoptera exigua, were used to analysis of the environmental samples. Except Waya-chun stream showing T-N content of 9.12 mg/L, most streams were contaminated with relatively low levels of overall pollutants in terms of T-N, T-P, and COD, compared to their acceptable environmental levels designated by the Ministry of Environment. Contents of Pb and Cd in samples of each stream were much lower than environmentally permissible levels. However, several times higherconcentrations of Pb and Cd were found in locations at Mi-chun, Kilan-chun, and Hyunha-chun streams, in comparison with other streams. Diazinon, parathion, and phenthoate compounds among organophosphorus pesticides were detected as concentrations of 0.19, 0.40, and $1.13\;{\mu}g/g$, respectively, from soil sample collected in the vicinity of Mi-chun stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners, known as endocrine disrupting chemicals, selected in this study were not found above the limit of detection. Biomarker analyses using insect immune responses indicated that Waya-chun stream was suspected as exposure to environmental pollutants. Limitation and compensation of both environmental analysis techniques are discussed.

Antibacterial, Antioxidant, and Antiaging Effects of the Ethanol Extract of Dolnamul (Sedum sarmentosum) and the Production of the Oil in Water Cream (돌나물(Sedum sarmentosum) 에탄올 추출물의 항균, 항산화, 항노화 효과와 수중유적형 크림의 제조)

  • Kim, Young Dae;Kim, Young Min;Mo, Eun Kyoung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • This study was performed to investigate the functional properties and characteristics of Dolnamul (Sedum sarmentosum) as a cosmetic ingredient. Lyophilized sedum powder was extracted with ethanol and stored at $-20^{\circ}C$ for the following experiments. Total polyphenol compounds of the ethanol extract of sedum (SE) was $27.98{\pm}0.34g/kg$(dry weight): epicatechin ($162.14{\pm}5.07mg/kg$), epigallocatechin ($55.99{\pm}2.49mg/kg$), and kaempferol ($47.96{\pm}3.02mg/kg$) were contained in the SE. The SE had organic radical scavenging capacity ($78.43{\pm}1.08%$) and metal reducing power (FRAP value $2.54{\pm}0.12$). FTC and TBARS assays confirmed that the SE inhibited the early stage of lipid peroxidation ($62.03{\pm}0.38%$) as well as the final stage of lipid peroxidation ($55.36{\pm}2.05%$), respectively. The SE (5 mg/mL, dry weight) was proved to have antibacterial effect on the growth of Propionibacterium acnes. The inhibitory percentages of the SE on elastase and collagenase activities were $38.94{\pm}7.09%$ and $78.94{\pm}2.49%$, respectively. Compare to the control group, the SE treated group induced an increase of Col3A1 expression and collagen production ($58.11{\pm}1.07%$). The oil in water emulsion (0.5% SE adding group) showed pH 6.88 and 1.47 g/mL of density. The hardness changes of the SE adding emulsions were not detected during the stored periods at various temperatures ($-20-45^{\circ}C$) for four weeks. It is considered that the SE has antibacterial, antioxidant, and antiaging activities.

Study on the Screening System of Organic Resources for Agricultural Utilization (유기성 자원의 농업적 활용을 위한 선별체계 연구)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Kwon, Soon-Ik;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.92-100
    • /
    • 2005
  • This study was conducted to find suitable methods for screening organic resources useful for compost. Twenty-seven industrial and domestic sludges were collected from various cities and industrial areas. Contents of organic matters in the sludges were in the range of 79.3-98.0%, and the contents were much higher than the regulation level (60%) for raw materials of compost. Contents of total nitrogen were in the range of 0.8-2.6%. Contents of Fe and Al were very high. Content of HEM was highest in textile sludge ($257mg\;kg^{-1}$) and the contents in the others were in the range of $12.6-90.3mg\;kg^{-1}$. Content of PAHs was lowest in food sludge ($739.1{\mu}g\;kg^{-1}$ and pulp-mill sludge had the highest PAHs content ($3461.8{\mu}g\;kg^{-1}$). $Microtox^{(R)}$ $EC_{50}$ values were higher in the sludges which were classified as a possible material in composting after analysis and investigation. Lettuce root elongation and $EC_{50}$ values were relatively lower in pulp-mill sludge, sewage sludge 3 (Large city), food sludge and leather sludge. Therefore, mineral nutrients, heavy metals, organic compounds (HEM, PAHs, PCBs), and bioassay ($Microtox^{(R)}$ $EC_{50}$, Relative root elongation test) are recommended to be included in the screening system of raw material of compost in addition to the current regulation with organic matter and 8 heavy metals.

A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants (원전 해체 콘크리트 폐기물의 재활용에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.285-297
    • /
    • 2021
  • Globally, nuclear-decommissioning facilities have been increased in number, and thereby hundreds of thousands of wastes, such as concrete, soil, and metal, have been generated. For this reason, there have been numerous efforts and researches on the development of technology for volume reduction and recycling of solid radioactive wastes, and this study reviewed and examined thoroughly such previous studies. The waste concrete powder is rehydrated by other processes such as grinding and sintering, and the processes rendered aluminate (C3A), C4AF, C3S, and ��-C2S, which are the significant compounds controlling the hydration reaction of concrete and the compressive strength of the solidified matrix. The review of the previous studies confirmed that waste concretes could be used as recycling cement, but there remain problems with the decreasing strength of solidified matrix due to mingling with aggregates. There have been further efforts to improve the performance of recycling concrete via mixing with reactive agents using industrial by-products, such as blast furnace slag and fly ash. As a result, the compressive strength of the solidified matrix was proved to be enhanced. On the contrary, there have been few kinds of researches on manufacturing recycled concretes using soil wastes. Illite and zeolite in soil waste show the high adsorption capacity on radioactive nuclides, and they can be recycled as solidification agents. If the soil wastes are recycled as much as possible, the volume of wastes generated from the decommissioning of nuclear power plants (NPPs) is not only significantly reduced, but collateral benefits also are received because radioactive wastes are safely disposed of by solidification agents made from such soil wastes. Thus, it is required to study the production of non-sintered cement using clay minerals in soil wastes. This paper reviewed related domestic and foreign researches to consider the sustainable recycling of concrete waste from NPPs as recycling cement and utilizing clay minerals in soil waste to produce unsintered cement.