• 제목/요약/키워드: Metal composite

검색결과 1,297건 처리시간 0.026초

강/복합재 이중구조 실린더 설계를 위한 유한요소 해석 (Finite Element Analysis for the Design of Fiber Reinforced Metal Cylinder)

  • 김태환;김위대;정철곤
    • Composites Research
    • /
    • 제26권1호
    • /
    • pp.7-13
    • /
    • 2013
  • 본 연구에서는 특수강과 복합재료를 사용한 이중구조 실린더의 설계를 위한 해석에 대해서 기술하였다. 특수강과 복합재의 이중구조는 제품의 특성에 적합한 물성을 유지하면서도 무게를 절감해 줄 수 있으며, 이로 인해 고탄성 저중량을 필요로 하는 각종 지상무기 산업분야와 항공분야, 스포츠 관련 분야 등에 점차 확대 적용되고 있다. 따라서 본 연구에서는 하나의 설계에 복합재의 적층각, 종류 등을 바꾸어 가며 이중구조의 설계에 가장 적합한 복합재 적용 방법을 찾기 위해 해석을 실시하였다. 또한 해석의 결과 값들의 비교를 통해 본 연구 설계목표에 가장 알맞은 복합재 적용 방법을 제시하였다.

키토산/셀룰로오스 아세테이트 복합필름의 제조와 특성 (Preparation and Characterization of Chitosan/Cellulose Acetate Blend Film)

  • 정영진;안병재;최해욱;김홍성;이영희
    • 한국염색가공학회지
    • /
    • 제19권4호
    • /
    • pp.10-17
    • /
    • 2007
  • Chitosan(CS) and cellulose acetate(CA) composite films were prepared using formic acid as a cosolvent by casting, solvent evaporating and neutralization method. This study examines if the blending method, which uses formic acid as a cosolvent is efficient in improving the mechanical properties of CS film, especially wet strength and elongation. Formic acid is an effective cosolvent for the blend of CS and CA. Under wet condition, tensile strength and elongation of the composite films were obviously higher than those of the films made from pure CS. FTIR, DSC, and X-ray diffraction showed that the composite films exhibit a high level of compatibility and that strong interaction between the CS and CA was caused by intermolecular hydrogen bonding. The affinity series of composite film to transition metal ions are Cu(II) > Cd(II) > Cr(III). The adsorption of Cu((II) ion was shown to be highly pH sensitive.

단섬유 금속복합체에서의 복합강화효과에 관한연구 (A Study on the Composite Strengthening Effect in Metal Matrix Composites)

  • 김홍건
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.61-66
    • /
    • 1996
  • An overall feature to simulate composite behavior and to predict closed solution has been performed for the application to the stress analysis in a discontinuous composite solid. To obtain the internal field quantities of composite, the micromechanics analysis and finite element analysis (FEA) were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. Further, a micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites has been developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparions between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. It was found that the proposed simulation methodology for stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical behavior.

  • PDF

마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성 (Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems)

  • 홍대석;이성희;이충효;김지순;권영순
    • 한국분말재료학회지
    • /
    • 제11권3호
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

고속열차 점착계수 향상을 위한 신규 복합재료 분말 마찰조절재 개발 및 점착력 특성 평가 (Development of Novel Composite Powder Friction Modifier for Improving Wheel-rail Adhesion in High-speed Train)

  • 오민철;안병민
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.501-506
    • /
    • 2018
  • With the recent remarkable improvements in the average speeds of contemporary trains, a necessity has arisen for the development of new friction modifiers to improve adhesion characteristics at the wheel-rail interface. The friction modifier must be designed to reduce slippage or sliding of the trains' wheels on the rails under conditions of rapid acceleration or braking without excessive rolling contact wear. In this study, a novel composite material consisting of metal, ceramic, and polymer is proposed as a friction modifier to improve adhesion between wheels and rails. A blend of Al-6Cu-0.5Mg metallic powder, $Al_2O_3$ ceramic powder, and Bakelite-based polymer in various weight-fractions is hot-pressed at $150^{\circ}C$ to form a bulk composite material. Variation in the adhesion coefficient is evaluated using a high-speed wheel-rail friction tester, with and without application of the composite friction modifier, under both dry and wet conditions. The effect of varying the weighting fractions of metal and ceramic friction powders is detailed in the paper.

Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries

  • Kim, Yunjung;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.250-257
    • /
    • 2022
  • Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.

비대칭 경계조건을 가지는 체결부의 3차원 접촉응력해석 (Three-dimensional contact analysis of a composite joint with unsymmetric boundary condition)

  • 장기정;박노회;안현수;권진회;최진호
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.110-113
    • /
    • 2002
  • As a preliminary study for the three dimensional failure analysis of composite joints, the three dimensional stress analysis on a pin-loaded unidirectional-fabric hybrid composite joints are performed. The contact and frictions between composite plate and metal bush are considered in the finite element method by NASTRAN. Experiments are conducted to validate the accuracy and feasibility of the finite element technique for 25 specimens with 5 different geometries. The finite element and experimental results show the bush cap induces the unsymmetric deformation, stress distribution, and failure behavior through the thickness. The experiment also shows the failure loads are higher in the joint with bush cap than without it.

  • PDF

BN 입자 강화 Al-5wt% Mg 기지 복합재료의 고온 크립 변형에서의 임계응력 해석 (A Study of Threshold stress during High Temperature Creep of $\textrm{BN}_f$/Al-5, wt% Mg Metal Matrix Composite)

  • 송명훈;권훈;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.187-191
    • /
    • 2000
  • High temperature creep behaviour of Al-5 wt% Mg alloy reinforced with 7.5% BN flakes was studied. The composite specimens showed two main creep characteristics : (1) the value of the apparent stress exponent of the composite was high and varied with applied stress (2) the apparent activation energy for creep was much larger than that for self-diffusion in aluminum The true stress exponent of the composite was set equal to 5. Temperature dependence of the threshold stress of the composite was very strong. Which could not be rationalized by allowing for the temperature dependence of the elastic modulus change. AIN particles which were incorporated into the Al matrix during fabrication of the composite by the PRIMEXTM method were found to be effective barriers to dislocation motion and to give rise the threshold stress during creep of the composite

  • PDF

복합재료 보링바의 동적 특성에 관한 연구 (A Study on the Dynamic Characteristics of the Composite Boring Bar)

  • 황희윤;김진국;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.206-210
    • /
    • 2003
  • Machining of deep holes with conventional boring bars frequently induce chatter vibration because of their low dynamic stiffness which is defined as the product of static stiffness and damping of conventional boring bar materials. In addition, the specific stiffness ($E/{\rho}g$) of boring bars is more important than the static stiffness to increase the fundamental natural frequency of boring bars in high speed machining. Therefore, boring bar materials should have high static stiffness and high damping as well as high specific stiffness. The best way to meet requirements is to employ fiber reinforced composite materials for high speed boring bars because composite materials have high static stiffness, high damping and high specific stiffness compared to conventional boring bar materials. In this study, the dynamic characteristics of carbon fiber epoxy composite boring bars were investigated. From the metal cutting test, it was found that the chatter was not initiated up to the ratio of length to diameter of 10.7 at the rotating speed of 2,500 rpm.

  • PDF

Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue

  • Sakin, Raif
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1531-1548
    • /
    • 2015
  • The aim of this study is to investigate the relationship between Barcol hardness (H) and flexural modulus (E) degradation of composite sheets subjected to flexural fatigue. The resin transfer molding (RTM) method was used to produce 3-mm-thick composite sheets with fiber volume fraction of 44%. The composite sheets were subjected to flexural fatigue tests and Barcol scale hardness measurements. After these tests, the stiffness and hardness degradations were investigated in the composite sheets that failed after around one million cycles (stage III). Flexural modulus degradation values were in the range of 0.41-0.42 with the corresponding measured hardness degradation values in the range of 0.25-0.32 for the all fatigued composite sheets. Thus, a 25% reduction in the initial hardness and a 41% reduction in the initial flexural modulus can be taken as the failure criteria. The results showed that a reasonably well-defined relationship between Barcol hardness and flexural modulus degradation in the distance range.