• Title/Summary/Keyword: Metal composite

Search Result 1,297, Processing Time 0.027 seconds

Investigation of cure cycle for co-cured metal/composite hybrid structures without fabricating thermal residual stress (동시경화 하이브리드 금속/복합재료 구조물의 제조 잔류 열응력 제거를 위한 경화사이클에 관한 연구)

  • Kim Hak Sung;Park Sang Wook;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.83-87
    • /
    • 2004
  • In this work, the cure cycle of co-cured metal/composite structure was investigated to decrease fabricating thermal residual stresses between the metal and the composite material. DSC (Differential scanning calorimetry) experiment and static lap shear test of co-cured aluminum/composite double lap joint as well as the curvature experiment of co-cured steel/composite strip were performed to investigate the effect of curing cycle on the thermal residual stress of co-cured hybrid structures. From the experiments, it was found that post curing method after abrupt cooling of co-cured aluminum/composite hybrid structure at certain point of degree of cure during curing process could eliminate fabricating the thermal residual stresses.

  • PDF

Characterization of Ductile Metal-FRP Laminated Composites for Strengthening of Structures: Part-II Tensile Behavior (사회기반설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-II휨 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the flexural fracture test with various experimental variables including the number, the angle and the combination of FRP laminates. From the aluminum-FRP composite tests no great increase in flexural strength and flexural toughness were observed. However, flexural toughness of steel-FRP laminate composite was increased so that its behavior can be considered in the retrofit design. In addition, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions.

Bending Behaviour of Composite Slab Using a New-Shaped Steel Deck Plate and Expanded Metal (신형 데크플레이트와 철판망을 적용한 합성슬래브의 휨 거동)

  • Kim, Myoung Mo;Eom, Chul Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.403-412
    • /
    • 2003
  • The composite metal deck plate system has been widely used for office structures. Recently, however, the flat deck plate has been developed to apply the composite slab system to residential structures. Reduction in construction cost and time can be expected by using expanded metal instead of wire mesh as crack control reinforcements. This study proposed a composite slab system composed of a new-shaped steel deck plate and expanded metal. Twelve specimens were tested to evaluate the structural performance of the new composite slab system. The test results were summarized mainly in terms of maximum load carrying capacity and failure behaviors of each specimen.

Characterization of Metal-FRP Laminated Composites for Strengthening of Structures: Part-I Tensile Behavior (사회기반시설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-I 인장 거동)

  • Park, Cheol-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2011
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the tensile test with various experimental variables including the number, the angle and the combination of FRP laminates. From the test results, both aluminum and steel-FRP laminate composite material showed increased fracture toughness. However, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions. In general, steel-FRP laminate composite showed better tensile performance in regards to the seismic retrofit purposes.

Single Walled Carbon Nanotubes-Reinforced Metal Matrix Composite Materials Fabricated by Spark Plasma Sintering (방전플라즈마 소결공정으로 제조된 단일벽탄소나노튜브 강화 금속기지 복합재료)

  • Kwon, Hansang
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.94-99
    • /
    • 2017
  • Single walled carbon nanotubes were mixed with various metal powders by mechanical ball milling and sintered by spark plasma sintering processes. Two compositional (0.1 and 1 vol%) of the single walled carbon nanotubes were dispersed onto the pure aluminum, 5052 aluminum alloy, pure titanium, Ti6Al4Vanadium alloy, pure copper, and stainless steel 316L. Each composite powders were spark plasma sintered at $600^{\circ}C$ and well synthesized regardless of the matrices. Vickers hardness of the composite materials was measured and they exhibited higher values regardless of the carbon nanotubes composition than those of the pure materials. Moreover, single walled carbon nanotubes reinforced copper matrix composites showed highest enhancement between the other metal matrices system. We believe that low energy mechanical ball milling and spark plasma sintering processes are useful tool for fabricating of the carbon nanotubes-reinforced various metal matrices composite materials. The single walled carbon nanotubes-reinforced various metal matrices composite materials could be used as an engineering parts in many kind of industrial fields such as aviation, transportation and electro technologies etc. However, detail strengthening mechanism should be carefully investigated.

Study on the Mechanical Behavior of Fiber Metal Laminates Using Classical Lamination Theory (고전 적층이론에 의한 섬유금속적층판의 기계적 거동 연구)

  • 노희석;최흥섭;강길호;하민수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.37-41
    • /
    • 2003
  • In this study the mechanical behaviors of fiber metal laminates (FML) such as ARALL, GLARE and CARE which are recently developed as new structural materials and known to have excellent fatigue resistant characteristics while with relatively low densities compared to the conventional aluminum materials, are considered through the classical lamination theory. The mechanical properties such as elastic moduli, thermal expansion coefficients and hygro-thermally induced residual stresses in the fiber metal laminates are obtained and compared each other. Also load carrying mechanism between metal sheets and composite layers in the FML are considered.

  • PDF

Evaluation of shear bond strengths of gingiva-colored composite resin to porcelain, metal and zirconia substrates

  • An, Hong-Seok;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.166-171
    • /
    • 2011
  • PURPOSE. The purpose of this study is to evaluate and compare the shear bond strength of the gingiva-colored composite resin and the tooth-colored composite resin to porcelain, metal and zirconia. MATERIALS AND METHODS. Sixty cylindrical specimens were fabricated and divided into the following 6 groups (Group 1-W: tooth-colored composite bonded to porcelain, Group 1-P: gingiva-colored composite bonded to porcelain, Group 2-W: tooth-colored composite bonded to base metal, Group 2-P: gingiva-colored composite bonded to base metal, Group 3-W: tooth-colored composite bonded to zirconia, Group 3-P: gingiva-colored composite bonded to zirconia). The shear bond strength was measured with a universal testing machine after thermocycling and the failure mode was noted. All data were analyzed using the two-way analysis of variance test and the Bonferroni post-hoc test at a significance level of 0.05. RESULTS. The mean shear bond strength values in MPa were 12.39, 13.42, 8.78, 7.98, 4.64 and 3.74 for Group 1-W, 1-P, 2-W, 2-P, 3-W and 3-P, respectively. The difference between the two kinds of composite resin was not significant. The shear bond strength of Group 1 was the highest and that of Group 3 was the lowest. The differences among Group 1, 2 and 3 were all significant (P<.05). CONCLUSION. The shear bond strength of the gingiva-colored composite was not less than that of the tooth-colored composite. Thus, repairing or fabricating ceramic restorations using the gingiva-colored composite resin can be regarded as a practical method. Especially, the prognosis would be fine when applied on porcelain surfaces.

Study on the Electrical Conductivity in Polysiloxane/Metal Composite Containing Metal Oxide (금속산화물을 포함한 변성폴리실록산/금속 복합체의 전기 전도성 연구)

  • Im, Hyungu;Kim, Jooheon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The block-co-polymer type thermosetting polysiloxane coordinated with metal oxide was synthesized to investigate the effect of metal oxide on the dispersity of metal powder in the polysiloxane/metal composite material. The metal powder in the polysiloxane/metal composite materials is better dispersed with metal oxide complex polysiloxane than the case without metal oxide. To understand the effect of quantities of metal oxide on the polysiloxane chain, the various polysiloxanes with different ratios of block unit were synthesized. Electrical conductivity was interpreted by percolation threshold theory to understand the dispersity of dense composite. The behavior of conductivity was in good agreement with theoretical value. The critical value was decreased as the quantities of metal oxide are increased. As a result, as the metal oxide increased on the polymer chain, the dispersity of metal filler was increased.

A Study on the Fabrication of Cast Iron-Babbitt Metal Composite Pipes by Centrifugal Casting Process (원심주조법에 의한 주철-Babbitt Metal 복합관 제조에 관한 연구)

  • Lee, Chung-Do;Kang, Choon-Sik
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.42-49
    • /
    • 1993
  • Conventional manufacturing process for cast iron-babbitt metal composite is complicate and bimetallic bonding by centrifugal casting is also difficult because their melting point is largely different and nonmetallic inclusion exists on outer shell. This study is aiming to simplify multistage process by adding Cu-powder as insert metals during cast iron solidification. The variables on fabrication of composite pipe are mold rotating speed and inner surface temperature of outer metal. The optimum temperature range for fusion bonding between cast iron and Cu-layer was $1100^{\circ}C-1140^{\circ}C$ in case of mold rotating speed was 700rpm. When the inner surface of Cu-layer was at $900^{\circ}C$, the value of interfacial hardness between Cu-layer and babbitt metal were higher than Cu-matrix by forming diffusion layer, interfacial products between Cu-layer and babbitt metal are proved to be $Cu_6Sn_5({\eta})$by XRD.

  • PDF

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF