• Title/Summary/Keyword: Metal belt CVT

Search Result 22, Processing Time 0.029 seconds

Effective Friction Coefficient and Improved Formula of Speed Ratio-Torque-Thrust Relationship for Metal Belt CVT (금속벨트 CVT의 유효마찰계수와 개선된 변속비-토크-드러스트 관계식)

  • Lee, B.J.;Kim, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.226-233
    • /
    • 1998
  • In this paper, an experimental study was performed to investigate the speed ratio-torque-thrust characteristics for metal belt CVT. It is observed from the experimental results that nondimensional secondary thrust force follows with the existing theoretical formula with ${\mu}$=0.09~0.12 depending on the torque and the speed ratio. In order to represent these characteristics, an effective friction coefficient was introduced. Also, the slip characteristics between the belt and the pulley were investigated experimentally and traction coefficients at gross slip were obtained for various speed ratios. Using the traction coefficients and the effective friction coefficients, an improved formula for the secondary thrust force was suggested assuming that thrust force is the summation of the thrust of pseudo inactive arc and the thrust of pseudo active arc. The effective friction coefficient and the improved formula for the speed ratio-torque-thrust relationship suggested in this work can be used to obtain the appropriate secondary thrust.

  • PDF

Study on Continuously Variable System Using to Centrifugal Belt Pulley

  • Do, Hyung-jin;Youm, Kwang-Wook
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2020
  • In the case of a belt-pulley type CVT that transmits a driving force by using a variable pulley and a metal belt, slippage occurs due to transmission of power by using a belt, which results in a decrease in efficiency. Therefore, in this study, the rails were machined on the plate surface of the pulley to reduce the friction and slip between the belt and the pulley while applying the characteristics of the CVT. As the plate is rotated by the shape of the rail, a centrifugal belt pulley type continuously variable transmission system which shifts while varying the radius of rotation of the belt that transmits power is studied. Accordingly, the structure of the pulley was designed and the centrifugal belt pulley type continuously variable transmission was Manufactured. In addition, to verify the suitability of the manufactured transmission, the power transmission efficiency was monitored by establishing an interface with the controller. The structural analysis of the plate proved the suitability of the centrifugal belt pulley type continuously variable transmission.

Design of Ratio Control Valve for a Pressure Control Type CVT Using P-Line (P-라인을 이용한 압력제어방식 CVT 변속비제어밸브 설계)

  • 류완식;이용준;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.145-151
    • /
    • 2004
  • In this paper, a pressure control type ratio control valve(RCV) is designed for a metal belt CVT. Steady state and transient characteristics of the pressure control CVT are investigated by simulations and experiments. In addition, P-line is proposed to predict the shift performance. It is found that the bigger the pressure margin, the faster the shift response. It is expected that the P-line can be used in design of the RCV to meet the desired shift performance.

Study on Engine-CVT Consolidated Control(II)-Experimental Study (엔진-CVT 통합제어에 관한 연구(II)-실험적 연구)

  • 김달철;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.111-119
    • /
    • 1997
  • In this paper, engine-CVT consolidated control performance were investigated experimentally. Engine-CVT consolidated control was composed of engine throttle control based on power difference and CVT ratio control based on CVT ratio map. Experimental results showed that engine optimal operation was obtained while satisfying the driver's desire, i. e., following the given drive mode by engine-CVT consolidated control. Also, it was found that engine performance is subjected to inertia of the powertrain where the magnitude of acceleration changes abruptyly. Comparing with the results of CVT only control, the results of engine-CVT consolidated control showed better performance. Therefore, in order to meet the driver's desire as well as keeping the engine optimal operation, the engine-CVT consolidated control could be suggested as an integral solution.

  • PDF

Development and Optimal Operation of an Electro-Hydraulic Controlled Rig Type CVT (전자유압제어식 리그형 CVT 개발과 최적운전)

  • Kim, K.W.;Kwon, H.B.;Kim, H.S.;Eun, T.;Park, C.I.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2181-2190
    • /
    • 1993
  • An electro-hydraulic controlled rig type CVT(Continuously Variable Transmission) system was developed and its performance tests were carried out for the optimal operation. A CVT map was suggested based on the speed ration-axial force-torque relationship which was derived from the metal belt CVT mechanics. Also, a real time control and operation software was developed for the electro-hydraulic CVT system. By using the software and the CVT map, the control system was designed for the CVT speed ratio control with various drive modes. The electro-hydraulic CVT system developed in this study showed that the optimal operation algorithm could be obtained for the best fuel economy or the maximum power mode.

Ratio Control of CVT by Considering the CVT System Efficiency (CVT 시스템 효율을 고려한 변속 제어)

  • Ryu, Wan-Sik;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.157-163
    • /
    • 2006
  • A modified ratio control algorithm is proposed for the improvement of the fuel economy for a metal belt CVT. In the modified ratio control algorithm, the CVT ratio is controlled to operate the engine on the optimal operation region which provides the best efficiency from the view point of the overall efficiency of the engine-CVT system. In order to construct the modified ratio map, the CVT system loss model is used by assuming that the all the loss is attributed to the torque loss. It is found from the simulation results that the fuel economy by the modified ratio control algorithm is improved by 5.5 percents compared with the existing ratio control.

Shift Speed Improvement of a Metal Belt CVT

  • Lee, Heera;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1623-1629
    • /
    • 2001
  • This parer presents a CVT line pressure control strategy for the increased shift speed. Firstly, an algorithm to increase the CVT shift speed is suggested based on a modified CVT shift dynamics and shift speed maps are constructed. In addition, simplified dynamic models of the line pressure and the ratio control valve are derived by considering the CVT shift dynamics, and low level control algorithms for the ratio and the line pressure control are proposed. Using the shift speed maps and the simplified dynamic models of the CVT system, shift performance is investigated. It is found from the experimental and simulation results that improved shift speed can be achieved by increasing the lilly pressure.

  • PDF

Mechanical Loss Model for a Metal Belt CVT (금속벨트 CVT 동력전달 손실모델)

  • Ryu, Wan-Sik;Kim, Pil-Gu;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, the belt-pulley mechanical loss is investigated. A bondgraph model for the mechanical loss is developed from the viewpoint of the power flow by assuming that all power losses are attributed to the torque loss. The mechanical loss model consists of transient and steady state part. The coefficients of the power loss model are obtained from the experiments. It is found from the simulations and experiments that the steady state loss depends on the line pressure, input torque and rotational speed while the transient loss depends on the rotational speed, shift speed and the inertial torque.

A Control of CVT Hydraulic System using Embedded System (임베디드 시스템을 이용한 CVT 유압시스템 제어)

  • Han, K.W.;Ryu, W.S.;Jang, I.G.;Jean, J.W.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • The continuously variable transmission (CVT) of which speed ratio can change continuously in a fixed range has the benefits of low fuel consumption and exhaust gas because it enables the engine of a vehicle to operate in a high efficiency range regardless of vehicle speed. The speed ratio of belt type CVT is controlled by adjusting line pressure. The one of the line pressure control methods, mechanical-hydraulic control is usually adopting VDT's control method, in which the secondary solenoid valve has two functions both a regulator and a line pressure controller. However, this control method could not show the high performance of CVT with optimal driving capability because of the limitation of simple control algorithm, and it could not gain market share sufficiently in spite of the advantage of CVT with low fuel consumption. On the other hand, the electro-hydraulic control method gives the enhancement of power performance and low fuel consumption by implementing various driving mode using the proportional control or PWM control. The key of CVT technique is to develop a control algorithm of the electro-hydraulic solenoid valve in order to implement the speed ratio efficiently. In this paper, the line pressure control algorithm is proposed and the hydraulic system is controlled using metal belt type CVT test rig and the embedded ECU platform.

  • PDF

Optimal Engine Operation by Shift Speed Control of a CVT

  • Lee, Heera;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.882-888
    • /
    • 2002
  • In this paper, an algorithm to increase the shift speed is suggested by increasing the line pressure for a metal belt CVT. In order to control the shift speed, an algorithm to calculate the target shift speed is presented from the modified CVT shift dynamics. In applying the shift speed control algorithm, a criterion is proposed to prevent the excessive hydraulic loss due to the increased line pressure. Simulations are performed based on the dynamic models of the hydraulic control valves, powertrain and the vehicle. It is found from the simulation results that performance of the engine operation can be improved by the faster shift speed, which results in the improved fuel economy by 2% compared with that of the conventional electronic control CVT in spite of the increased hydraulic loss due to the increased line pressure.