• Title/Summary/Keyword: Metal adsorption

Search Result 944, Processing Time 0.021 seconds

Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies

  • Lim, Ji-Hyun;Kang, Hee-Man;Kim, Lee-Hyung;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Adsorption of heavy metals by sawdust was investigated to evaluate the effectiveness of using sawdust to remove heavy metals from aqueous solutions. Kinetic and isotherm studies were carried out by considering the effects of initial concentration and pH. The adsorption isotherms of heavy metals fitted the Langmuir or Freundlich model reasonably well. The adsorption capacity of metal was in the order $Pb^{2+}$ > $Cu^{2+}$ > $Zn^{2+}$. A high concentration of co-existing ions such as $Ca^{2+}$ and $Mg^{2+}$ depressed the adsorption of heavy metal. Adsorption data showed that metal adsorption on sawdust follows a pseudo-second-order reaction. Kinetic studies also indicated that both surface adsorption and intraparticle diffusion were involved in metal adsorption on sawdust. Column studies prove that sawdust could be effective biosorbent for the removal of heavy metals from aqueous phase.

Adsorption Characteristics of Nickel, Zinc and Cadmium Ions using Alginate Bead (Alginate Bead를 이용한 니켈, 아연, 카드뮴의 흡착특성에 관한 연구)

  • Jung, Heung-Joe
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This study investigated the adsorption characteristics of nickel, zinc and cadmium ions from the aqueous solution onto the alginate bead. Adsorption equilibrium capacities of the heavy metal ions increased with increasing initial pH of the solution. The adsorption equilibrium isotherm of the heavy metal ions was well represented by Langmuir equation. The magnitude of adsorption capacity of the heavy metal ions onto alginate bead was the order of cadmium > zinc > nickel. Kinetic parameters were measured in a batch adsorber to analyze the adsorption rates of the heavy metal ions. The internal diffusion coefficient of the heavy metal ions in the intraparticle were determined by comparing the experimental concentration curves with those predicted from the surface diffusion model (SDM) and pore diffusion model (PDM). The internal diffusion of the heavy metal ions in the intraparticles was explained by PDM.

An Investigation for the Adsorption of Heavy Metal Ions by Polyamine Organic Adsorbent from the Aqueous Solution - The Influence of Molecular Weight and Degree of Deacetylation of Chitosan - (수용액 중에서 Polyamine계 유기응집제를 이용한 중금속 이온의 흡착 - 키토산의 분자량과 탈아세틸화도 -)

  • Park, Young-Mi;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.458-464
    • /
    • 2006
  • The adsorption ability of heavy metal ions from the aqueous solution by chitosan, which it is well known natural biopolymer, has been investigated. The fundamental study in this research is focusing on the physicochemical adsorption utilizing the chitosan as a organic chelating adsorbent, adsorb especially heavy metal ions from the waste liquid solution. The adsorption ability of the chitosan between metal ions, having different characteristics with Mw of 188,600, 297,200, and 504,200 g/mol and degree of deacetylation (DD) of 86.92% and 100% were investigated targeting on the $Ni^{2+}$, $Co^{2+}$, $Zn^{2+}$, and $Pb^{2+}$ ions, respectively. The uptake of heavy metal ions with chitosan was performed by atomic absorption flame emission spectrophotometer (AAS) as conducted residual metal ions. It was found that chitosan has an strong adsorption capacity for some metals under certain conditions. Chitosan, which have 100% degree of deacetylation showed high adsorption recovery ratio and have an affinity for all kinds of heavy metals. In contrast, the molecular weight of chitosan was not completely affected on metal ion adsorption.

Study on the Adsorption of Heavy Metal Ions by Biomaterials (생물질재료에 의한 중금속 흡착에 관한 연구)

  • 정석희;김상규;이민규
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.357-365
    • /
    • 1993
  • This study was conducted for the efficient utilization of biomaterials such as starch residue, tangerine skin, and green tea residue, which are agricultral by-products discarded in Cheju Province annually, as adsorbents and biomaterials were examined for their removal ability of heavy metal ions in waste water by batch adsorption experiments. The removal efficiency of biomaterials for heavy metal ions was above 80-90% and almost similar to activated carbon and the adsorption ability of those treated with 포르말린 was improved in the green tea residue only for $Pb^{2+}$, $Cu^{2+}$, and $Zn^{2+}$. In the conditions of pH, the removal efficiency of heavy metal ions was high in the range of 5-7. In the solutions which heavy metal ions were mixed, the removal efficiency was similar at $Ag^+$, $Pb^{+2}$ and reduced to about 10% at the other ions, as compared with the solutions they were not mixed. Adsorption isotherm of biomaterials was generally obeyed to Freundlich formular than Langmuir formular and Freundlich constant, 1/n were obtained in the range of 0.1-0.5.

  • PDF

Adsorption Characteristics of Multi-Metal Ions by Red Mud, Zeolite, Limestone, and Oyster Shell

  • Shin, Woo-Seok;Kang, Ku;Kim, Young-Kee
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • In this study, the performances of various adsorbents-red mud, zeolite, limestone, and oyster shell-were investigated for the adsorption of multi-metal ions ($Cr^{3+}$, $Ni^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $As^{3+}$, $Cd^{2+}$, and $Pb^{2+}$) from aqueous solutions. The result of scanning electron microscopy analyses indicated that the some metal ions were adsorbed onto the surface of the media. Moreover, Fourier transform infrared spectroscopy analysis showed that the Si(Al)-O bond (red mud and zeolite) and C-O bond (limestone and oyster shell) might be involved in heavy metal adsorption. The changes in the pH of the aqueous solutions upon applying adsorbents were investigated and the adsorption kinetics of the metal ions on different adsorbents were simulated by pseudo-first-order and pseudo-second-order models. The sorption process was relatively fast and equilibrium was reached after about 60 min of contact (except for $As^{3+}$). From the maximum capacity of the adsorption kinetic model, the removal of $Pb^{2+}$ and $Cu^{2+}$ were higher than for the other metal ions. Meanwhile, the reaction rate constants ($k_{1,2}$) indicated the slowest sorption in $As^{3+}$. The adsorption mechanisms of heavy metal ions were not only surface adsorption and ion exchange, but also surface precipitation. Based on the metal ions' adsorption efficiencies, red mud was found to be the most efficient of all the tested adsorbents. In addition, impurities in seawater did not lead to a significant decrease in the adsorption performance. It is concluded that red mud is a more economic high-performance alternative than the other tested adsorption materials for applying a removal of multi-metal in seawater.

Study on Adsorption of Heavy Metal tons by Cheju Scoria (제주 송이(Scoria)를 이용한 중금속 흡착에 관한 연구)

  • 이민규;서근학
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.195-201
    • /
    • 1996
  • This study was conducted for the efficient utilization of a scoria, which is abundantly found in Cheju island, as adsorbent and the scoria was examined for its performance in clarification of adsorption of heavy metal ions. The order in heavy metal ions adsorbed on scoria was; Pb+>Cd^{2+}$>Cu^{2+}$>Ag^+$>Co^{2+}$>Zn^{2+}$>Cr^{3+}$>Cr^{6+}$. This tendency was relatively consistent with the decreasing order of radius of hydrated metal ion. Also, the smaller scoria size and the larger amounts of scoria showed higher removal efficiency for heavy metal ions. The same scoria size showed more effective removal efficiency for heavy metal ions at lower initial concentration than at higher initial concentration. The adsorption abilities of original scoria and chemically treated scoria were compared. Adsorption isotherm of scoria was generally obeyed to Freundlich formula than langmuir formula and Freundlich constant, than was obtained in the range of 0.2~0.4.

  • PDF

Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis (갈대 biochar의 구리 및 카드뮴 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Seong-Heon;Shin, Ji-Hyun;Kim, Hong Chul;Seo, Dong Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • BACKGROUND: Heavy metal adsorptionnot only depends on biochar characteristics but also on the nature of the metals involved and on their competitive behavior for biochar adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu and Cd in mono-metal and binary-metal forms by biochar derived from Phragmites communis. METHODS AND RESULTS: Batch and column experiments were conducted to evaluate the competitive adsorption characteristics of the biocharfor Cu and Cd. In the batch experiments, the maximum adsorption capacity of Cd(63 mg/g) by biochar was higher than that for Cu (55 mg/g) in the mono-metal adsorption isotherm. On the other hand, the maximum Cu adsorption capacity (40 mg/g) by biochar was higher than that for Cd(25 mg/g) in the binary-metal adsorption isotherm. Cu was the most retained cations. Cd could be easily exchanged and substituted by Cu. The amounts of adsorbed metals in the column experiments were in the order of Cd (121 mg/g) > Cu (96 mg/g) in mono-metal conditions, and Cu (72 mg/g) > Cd (29 mg/g) in binary-metal conditions. CONCLUSION: Overall, the results demonstrated that competitive adsorption among metals increased the mobility of these metals. Particularly, Cd in binary-metal conditions lost its adsorption capacity most significantly.

Understanding the Mechanism of Hydrogen Adsorption into Metal Organic Frameworks (Metal-Organic Framework의 수소 흡착 메커니즘의 이해)

  • Lee, Tae-Bum;Kim, Dae-Jin;Yoon, Ji-Hye;Choi, Sang-Beom;Kim, Ja-Heon;Choi, Seung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.634-637
    • /
    • 2005
  • Hydrogen adsorption mechanism onto the porous metal-organic frameworks (MOFs) has been studied by density functional theory calculation. The selected functionals for the predict ion of interact ion energies between hydrogen and potential adsorption sites of MOF was utilized after the evaluation with the various functionals for interaction energy of $H_2C_6H_6$ model system the adsorption energy of hydrogen molecule into MOF was investigated with the consideration of the favorable adsorption sites and the orientations. We also calculated the second favorable adsorption sites by geometry optimization using every combination of two first absorbed hydrogen molecules. Based on the calculation of first and second adsorption sites and energies, the hydrogen adsorption into MOF follows a cooperative mechanism in which the initial metal sites initiate the propagation of the hydrogen adsorption on the whole frameworks. In addition, it was found that the interaction strength between the simple benzene ring with hydrogen is significantly reinforced when the benzene ring has been incorporated into the framework of MOFs.

  • PDF

A Study on the Fixed-bed Adsorption of Heavy Metal Ions over Chitosan Bead (키토산 비드에 의한 중금속 이온의 고정층 흡착에 관한 연구)

  • Chung, Kyong-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.166-172
    • /
    • 1999
  • Fixed-bed adsorption of metal ions on chitosan bead was studied to remove heavy metal ions in waste water. Chitin was extracted from carb shell and chitosan was prepared by deacetylation of the chitin. The chitosan in bead was used as an adsorbent for heavy metal ions. Freundlich and Langmuir isotherm was determined from the experimental results of equilibrium adsorption for individual metal ion ($Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$) on chitosan bead. Adsorption strength of metal ions decreased in the order of $Cu^{2+}$>$Co^{2+}$>$Ni^{2+}$ ion. Breakthrough curves of single and multicomponent adsorption for metal ions were obtained from the experimental results of fixed-bed adsorption. The breakthrough curves were analyzed by simulation with fixed-bed adsorption equation based on LDFA (linear driving force approximation) adopted LAS (ideal adsorbed solution) theory which can predict multi-component adsorption isotherm from individual adsorption isotherm. The behavior of fixed bed adsorption for single and multi-component system could be nicely simulated by the equation.

  • PDF

A Study on the Preparation of the Fly ash Adhesion-Activated Carbon and on the Removal of Heavy Metals (석탄회부착활성탄의 제조 및 중금속 제거에 관한 연구)

  • 문옥란;신대윤;고춘남
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • This study was aimed ultimately to develop an adsorption process treating heavy metal wastewater by utilizing activated carbon using flyash. The affecting factors in adsorption process on heavy metal by flyash adhesion-activated carbon are s follows. Factors such as pH, and quality of activated carbon, and reaction time made batch adsorption isotherm described adsorption capacity was made use of the investigation to evaluate adsorptive possibility of heavy metal.As the results of this study, H ion has influence on adsorption of heavy metal if pH is low. As reaction time is transformed, factors such as optimum reaction time is taken into consideration an adsorptive process of heavy metal because an adsorption and a reduction process occur. Adsorption isotherm of adhesion-activated carbon was generally obeyed to Freundlich formular than Langmuir formular and Freundlich constant, l/n were obtained in the range of 0.1~0.5.

  • PDF